Abstract:Electrical capacitance tomography (ECT) is a nonoptical imaging technique in which a map of the interior permittivity of a volume is estimated by making capacitance measurements at its boundary and solving an inverse problem. While previous ECT demonstrations have often been at centimeter scales, ECT is not limited to macroscopic systems. In this paper, we demonstrate ECT imaging of polymer microspheres and bacterial biofilms using a CMOS microelectrode array, achieving spatial resolution of 10 microns. Additionally, we propose a deep learning architecture and an improved multi-objective training scheme for reconstructing out-of-plane permittivity maps from the sensor measurements. Experimental results show that the proposed approach is able to resolve microscopic 3-D structures, achieving 91.5% prediction accuracy on the microsphere dataset and 82.7% on the biofilm dataset, including an average of 4.6% improvement over baseline computational methods.
Abstract:Federated Learning (FL) has become a practical and popular paradigm in machine learning. However, currently, there is no systematic solution that covers diverse use cases. Practitioners often face the challenge of how to select a matching FL framework for their use case. In this work, we present UniFed, the first unified benchmark for standardized evaluation of the existing open-source FL frameworks. With 15 evaluation scenarios, we present both qualitative and quantitative evaluation results of nine existing popular open-sourced FL frameworks, from the perspectives of functionality, usability, and system performance. We also provide suggestions on framework selection based on the benchmark conclusions and point out future improvement directions.