University of California, Los Angeles
Abstract:Recent developments in adversarial attacks on deep learning leave many mission-critical natural language processing (NLP) systems at risk of exploitation. To address the lack of computationally efficient adversarial defense methods, this paper reports a novel, universal technique that drastically improves the robustness of Bidirectional Encoder Representations from Transformers (BERT) by combining the unitary weights with the multi-margin loss. We discover that the marriage of these two simple ideas amplifies the protection against malicious interference. Our model, the unitary multi-margin BERT (UniBERT), boosts post-attack classification accuracies significantly by 5.3% to 73.8% while maintaining competitive pre-attack accuracies. Furthermore, the pre-attack and post-attack accuracy tradeoff can be adjusted via a single scalar parameter to best fit the design requirements for the target applications.
Abstract:Stochastic diffusion processes are pervasive in nature, from the seemingly erratic Brownian motion to the complex interactions of synaptically-coupled spiking neurons. Recently, drawing inspiration from Langevin dynamics, neuromorphic diffusion models were proposed and have become one of the major breakthroughs in the field of generative artificial intelligence. Unlike discriminative models that have been well developed to tackle classification or regression tasks, diffusion models as well as other generative models such as ChatGPT aim at creating content based upon contexts learned. However, the more complex algorithms of these models result in high computational costs using today's technologies, creating a bottleneck in their efficiency, and impeding further development. Here, we develop a spintronic voltage-controlled magnetoelectric memory hardware for the neuromorphic diffusion process. The in-memory computing capability of our spintronic devices goes beyond current Von Neumann architecture, where memory and computing units are separated. Together with the non-volatility of magnetic memory, we can achieve high-speed and low-cost computing, which is desirable for the increasing scale of generative models in the current era. We experimentally demonstrate that the hardware-based true random diffusion process can be implemented for image generation and achieve comparable image quality to software-based training as measured by the Frechet inception distance (FID) score, achieving ~10^3 better energy-per-bit-per-area over traditional hardware.
Abstract:Network design has been a central topic in machine learning. Large amounts of effort have been devoted towards creating efficient architectures through manual exploration as well as automated neural architecture search. However, todays architectures have yet to consider the diversity of neurons and the existence of neurons with specific processing functions. In this work, we optimize networks containing models of the max and coincidence neurons using neural architecture search, and analyze the structure, operations, and neurons of optimized networks to develop a signal-processing ResNet. The developed network achieves an average of 2% improvement in accuracy and a 25% improvement in network size across a variety of datasets, demonstrating the importance of neuronal functions in creating compact, efficient networks.
Abstract:While normalizations aim to fix the exploding and vanishing gradient problem in deep neural networks, they have drawbacks in speed or accuracy because of their dependency on the data set statistics. This work is a comprehensive study of a novel method based on unitary synaptic weights derived from Lie Group to construct intrinsically stable neural systems. Here we show that unitary convolutional neural networks deliver up to 32% faster inference speeds while maintaining competitive prediction accuracy. Unlike prior arts restricted to square synaptic weights, we expand the unitary networks to weights of any size and dimension.