Abstract:The algorithms of one-shot neural architecture search(NAS) have been widely used to reduce computation consumption. However, because of the interference among the subnets in which weights are shared, the subnets inherited from these super-net trained by those algorithms have poor consistency in precision ranking. To address this problem, we propose a step-by-step training super-net scheme from one-shot NAS to few-shot NAS. In the training scheme, we firstly train super-net in a one-shot way, and then we disentangle the weights of super-net by splitting them into multi-subnets and training them gradually. Finally, our method ranks 4th place in the CVPR2022 3rd Lightweight NAS Challenge Track1. Our code is available at https://github.com/liujiawei2333/CVPR2022-NAS-competition-Track-1-4th-solution.
Abstract:Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To enlarge FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{\deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.