Abstract:Sparse autoencoders (SAEs) have become a core ingredient in the reverse engineering of large-language models (LLMs). For LLMs, they have been shown to decompose intermediate representations that often are not interpretable directly into sparse sums of interpretable features, facilitating better control and subsequent analysis. However, similar analyses and approaches have been lacking for text-to-image models. We investigated the possibility of using SAEs to learn interpretable features for a few-step text-to-image diffusion models, such as SDXL Turbo. To this end, we train SAEs on the updates performed by transformer blocks within SDXL Turbo's denoising U-net. We find that their learned features are interpretable, causally influence the generation process, and reveal specialization among the blocks. In particular, we find one block that deals mainly with image composition, one that is mainly responsible for adding local details, and one for color, illumination, and style. Therefore, our work is an important first step towards better understanding the internals of generative text-to-image models like SDXL Turbo and showcases the potential of features learned by SAEs for the visual domain. Code is available at https://github.com/surkovv/sdxl-unbox
Abstract:Autoregressive (AR) Large Language Models (LLMs) have demonstrated significant success across numerous tasks. However, the AR modeling paradigm presents certain limitations; for instance, contemporary autoregressive LLMs are trained to generate one token at a time, which can result in noticeable latency. Recent advances have indicated that search and repeated sampling can enhance performance in various applications, such as theorem proving, code generation, and alignment, by utilizing greater computational resources during inference. In this study, we demonstrate that diffusion language models are capable of generating at least 32 tokens simultaneously, while exceeding the performance of AR models in text quality and on the LAMBADA natural language understanding benchmark. This outcome is achieved through a novel distillation method for discrete diffusion models, which reduces the number of inference steps by a factor of 32-64. Practically, our models, even without caching, can generate tokens at a rate that is up to 8 times faster than AR models employing KV caching, and we anticipate further improvements with the inclusion of caching. Moreover, we demonstrate the efficacy of our approach for diffusion language models with up to 860M parameters.
Abstract:The modern autoregressive Large Language Models (LLMs) have achieved outstanding performance on NLP benchmarks, and they are deployed in the real world. However, they still suffer from limitations of the autoregressive training paradigm. For example, autoregressive token generation is notably slow and can be prone to \textit{exposure bias}. The diffusion-based language models were proposed as an alternative to autoregressive generation to address some of these limitations. We evaluate the recently proposed Score Entropy Discrete Diffusion (SEDD) approach and show it is a promising alternative to autoregressive generation but it has some short-comings too. We empirically demonstrate the advantages and challenges of SEDD, and observe that SEDD generally matches autoregressive models in perplexity and on benchmarks such as HellaSwag, Arc or WinoGrande. Additionally, we show that in terms of inference latency, SEDD can be up to 4.5$\times$ more efficient than GPT-2. While SEDD allows conditioning on tokens at abitrary positions, SEDD appears slightly weaker than GPT-2 for conditional generation given short prompts. Finally, we reproduced the main results from the original SEDD paper.
Abstract:Denoising Diffusion Probabilistic Models (DDPMs) exhibit remarkable capabilities in image generation, with studies suggesting that they can generalize by composing latent factors learned from the training data. In this work, we go further and study DDPMs trained on strictly separate subsets of the data distribution with large gaps on the support of the latent factors. We show that such a model can effectively generate images in the unexplored, intermediate regions of the distribution. For instance, when trained on clearly smiling and non-smiling faces, we demonstrate a sampling procedure which can generate slightly smiling faces without reference images (zero-shot interpolation). We replicate these findings for other attributes as well as other datasets. $\href{https://github.com/jdeschena/ddpm-zero-shot-interpolation}{\text{Our code is available on GitHub.}}$
Abstract:We consider monotone variational inequality (VI) problems in multi-GPU settings where multiple processors/workers/clients have access to local stochastic dual vectors. This setting includes a broad range of important problems from distributed convex minimization to min-max and games. Extra-gradient, which is a de facto algorithm for monotone VI problems, has not been designed to be communication-efficient. To this end, we propose a quantized generalized extra-gradient (Q-GenX), which is an unbiased and adaptive compression method tailored to solve VIs. We provide an adaptive step-size rule, which adapts to the respective noise profiles at hand and achieve a fast rate of ${\mathcal O}(1/T)$ under relative noise, and an order-optimal ${\mathcal O}(1/\sqrt{T})$ under absolute noise and show distributed training accelerates convergence. Finally, we validate our theoretical results by providing real-world experiments and training generative adversarial networks on multiple GPUs.