Abstract:Event-guided imaging has received significant attention due to its potential to revolutionize instant imaging systems. However, the prior methods primarily focus on enhancing RGB images in a post-processing manner, neglecting the challenges of image signal processor (ISP) dealing with event sensor and the benefits events provide for reforming the ISP process. To achieve this, we conduct the first research on event-guided ISP. First, we present a new event-RAW paired dataset, collected with a novel but still confidential sensor that records pixel-level aligned events and RAW images. This dataset includes 3373 RAW images with 2248 x 3264 resolution and their corresponding events, spanning 24 scenes with 3 exposure modes and 3 lenses. Second, we propose a conventional ISP pipeline to generate good RGB frames as reference. This conventional ISP pipleline performs basic ISP operations, e.g.demosaicing, white balancing, denoising and color space transforming, with a ColorChecker as reference. Third, we classify the existing learnable ISP methods into 3 classes, and select multiple methods to train and evaluate on our new dataset. Lastly, since there is no prior work for reference, we propose a simple event-guided ISP method and test it on our dataset. We further put forward key technical challenges and future directions in RGB-Event ISP. In summary, to the best of our knowledge, this is the very first research focusing on event-guided ISP, and we hope it will inspire the community. The code and dataset are available at: https://github.com/yunfanLu/RGB-Event-ISP.
Abstract:This paper addresses the challenge of incremental learning in growing graphs with increasingly complex tasks. The goal is to continually train a graph model to handle new tasks while retaining its inference ability on previous tasks. Existing methods usually neglect the importance of memory diversity, limiting in effectively selecting high-quality memory from previous tasks and remembering broad previous knowledge within the scarce memory on graphs. To address that, we introduce a novel holistic Diversified Memory Selection and Generation (DMSG) framework for incremental learning in graphs, which first introduces a buffer selection strategy that considers both intra-class and inter-class diversities, employing an efficient greedy algorithm for sampling representative training nodes from graphs into memory buffers after learning each new task. Then, to adequately rememorize the knowledge preserved in the memory buffer when learning new tasks, we propose a diversified memory generation replay method. This method first utilizes a variational layer to generate the distribution of buffer node embeddings and sample synthesized ones for replaying. Furthermore, an adversarial variational embedding learning method and a reconstruction-based decoder are proposed to maintain the integrity and consolidate the generalization of the synthesized node embeddings, respectively. Finally, we evaluate our model on node classification tasks involving increasing class numbers. Extensive experimental results on publicly accessible datasets demonstrate the superiority of DMSG over state-of-the-art methods.