Abstract:Uncertainty in control and perception poses challenges for autonomous vehicle navigation in unstructured environments, leading to navigation failures and potential vehicle damage. This paper introduces a framework that minimizes control and perception uncertainty to ensure safe and reliable navigation. The framework consists of two uncertainty-aware models: a learning-based vehicle dynamics model and a self-supervised traversability estimation model. We train a vehicle dynamics model that can quantify the epistemic uncertainty of the model to perform active exploration, resulting in the efficient collection of training data and effective avoidance of uncertain state-action spaces. In addition, we employ meta-learning to train a traversability cost prediction network. The model can be trained with driving data from a variety of types of terrain, and it can online-adapt based on interaction experiences to reduce the aleatoric uncertainty. Integrating the dynamics model and traversability cost prediction model with a sampling-based model predictive controller allows for optimizing trajectories that avoid uncertain terrains and state-action spaces. Experimental results demonstrate that the proposed method reduces uncertainty in prediction and improves stability in autonomous vehicle navigation in unstructured environments.
Abstract:In recent years, learning-based control in robotics has gained significant attention due to its capability to address complex tasks in real-world environments. With the advances in machine learning algorithms and computational capabilities, this approach is becoming increasingly important for solving challenging control problems in robotics by learning unknown or partially known robot dynamics. Active exploration, in which a robot directs itself to states that yield the highest information gain, is essential for efficient data collection and minimizing human supervision. Similarly, uncertainty-aware deployment has been a growing concern in robotic control, as uncertain actions informed by the learned model can lead to unstable motions or failure. However, active exploration and uncertainty-aware deployment have been studied independently, and there is limited literature that seamlessly integrates them. This paper presents a unified model-based reinforcement learning framework that bridges these two tasks in the robotics control domain. Our framework uses a probabilistic ensemble neural network for dynamics learning, allowing the quantification of epistemic uncertainty via Jensen-Renyi Divergence. The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC, resulting in efficient collection of training data and successful avoidance of uncertain state-action spaces. We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
Abstract:High-speed autonomous driving in off-road environments has immense potential for various applications, but it also presents challenges due to the complexity of vehicle-terrain interactions. In such environments, it is crucial for the vehicle to predict its motion and adjust its controls proactively in response to environmental changes, such as variations in terrain elevation. To this end, we propose a method for learning terrain-aware kinodynamic model which is conditioned on both proprioceptive and exteroceptive information. The proposed model generates reliable predictions of 6-degree-of-freedom motion and can even estimate contact interactions without requiring ground truth force data during training. This enables the design of a safe and robust model predictive controller through appropriate cost function design which penalizes sampled trajectories with unstable motion, unsafe interactions, and high levels of uncertainty derived from the model. We demonstrate the effectiveness of our approach through experiments on a simulated off-road track, showing that our proposed model-controller pair outperforms the baseline and ensures robust high-speed driving performance without control failure.