University of Basel
Abstract:This paper introduces Diffuse-TreeVAE, a deep generative model that integrates hierarchical clustering into the framework of Denoising Diffusion Probabilistic Models (DDPMs). The proposed approach generates new images by sampling from a root embedding of a learned latent tree VAE-based structure, it then propagates through hierarchical paths, and utilizes a second-stage DDPM to refine and generate distinct, high-quality images for each data cluster. The result is a model that not only improves image clarity but also ensures that the generated samples are representative of their respective clusters, addressing the limitations of previous VAE-based methods and advancing the state of clustering-based generative modeling.
Abstract:We propose a new generative hierarchical clustering model that learns a flexible tree-based posterior distribution over latent variables. The proposed Tree Variational Autoencoder (TreeVAE) hierarchically divides samples according to their intrinsic characteristics, shedding light on hidden structure in the data. It adapts its architecture to discover the optimal tree for encoding dependencies between latent variables. The proposed tree-based generative architecture permits lightweight conditional inference and improves generative performance by utilizing specialized leaf decoders. We show that TreeVAE uncovers underlying clusters in the data and finds meaningful hierarchical relations between the different groups on a variety of datasets, including real-world imaging data. We present empirically that TreeVAE provides a more competitive log-likelihood lower bound than the sequential counterparts. Finally, due to its generative nature, TreeVAE is able to generate new samples from the discovered clusters via conditional sampling.
Abstract:Pulmonary hypertension (PH) in newborns and infants is a complex condition associated with several pulmonary, cardiac, and systemic diseases contributing to morbidity and mortality. Therefore, accurate and early detection of PH is crucial for successful management. Using echocardiography, the primary diagnostic tool in pediatrics, human assessment is both time-consuming and expertise-demanding, raising the need for an automated approach. In this work, we present an interpretable multi-view video-based deep learning approach to predict PH for a cohort of 194 newborns using echocardiograms. We use spatio-temporal convolutional architectures for the prediction of PH from each view, and aggregate the predictions of the different views using majority voting. To the best of our knowledge, this is the first work for an automated assessment of PH in newborns using echocardiograms. Our results show a mean F1-score of 0.84 for severity prediction and 0.92 for binary detection using 10-fold cross-validation. We complement our predictions with saliency maps and show that the learned model focuses on clinically relevant cardiac structures, motivating its usage in clinical practice.
Abstract:The Group-Lasso is a well-known tool for joint regularization in machine learning methods. While the l_{1,2} and the l_{1,\infty} version have been studied in detail and efficient algorithms exist, there are still open questions regarding other l_{1,p} variants. We characterize conditions for solutions of the l_{1,p} Group-Lasso for all p-norms with 1 <= p <= \infty, and we present a unified active set algorithm. For all p-norms, a highly efficient projected gradient algorithm is presented. This new algorithm enables us to compare the prediction performance of many variants of the Group-Lasso in a multi-task learning setting, where the aim is to solve many learning problems in parallel which are coupled via the Group-Lasso constraint. We conduct large-scale experiments on synthetic data and on two real-world data sets. In accordance with theoretical characterizations of the different norms we observe that the weak-coupling norms with p between 1.5 and 2 consistently outperform the strong-coupling norms with p >> 2.