Abstract:Tuberculosis (TB) remains a significant global health challenge, with pediatric cases posing a major concern. The World Health Organization (WHO) advocates for chest X-rays (CXRs) for TB screening. However, visual interpretation by radiologists can be subjective, time-consuming and prone to error, especially in pediatric TB. Artificial intelligence (AI)-driven computer-aided detection (CAD) tools, especially those utilizing deep learning, show promise in enhancing lung disease detection. However, challenges include data scarcity and lack of generalizability. In this context, we propose a novel self-supervised paradigm leveraging Vision Transformers (ViT) for improved TB detection in CXR, enabling zero-shot pediatric TB detection. We demonstrate improvements in TB detection performance ($\sim$12.7% and $\sim$13.4% top AUC/AUPR gains in adults and children, respectively) when conducting self-supervised pre-training when compared to fully-supervised (i.e., non pre-trained) ViT models, achieving top performances of 0.959 AUC and 0.962 AUPR in adult TB detection, and 0.697 AUC and 0.607 AUPR in zero-shot pediatric TB detection. As a result, this work demonstrates that self-supervised learning on adult CXRs effectively extends to challenging downstream tasks such as pediatric TB detection, where data are scarce.
Abstract:Tuberculosis (TB) is still recognized as one of the leading causes of death worldwide. Recent advances in deep learning (DL) have shown to enhance radiologists' ability to interpret chest X-ray (CXR) images accurately and with fewer errors, leading to a better diagnosis of this disease. However, little work has been done to develop models capable of diagnosing TB that offer good performance while being efficient, fast and computationally inexpensive. In this work, we propose LightTBNet, a novel lightweight, fast and efficient deep convolutional network specially customized to detect TB from CXR images. Using a total of 800 frontal CXR images from two publicly available datasets, our solution yielded an accuracy, F1 and area under the ROC curve (AUC) of 0.906, 0.907 and 0.961, respectively, on an independent test subset. The proposed model demonstrates outstanding performance while delivering a rapid prediction, with minimal computational and memory requirements, making it highly suitable for deployment in handheld devices that can be used in low-resource areas with high TB prevalence. Code publicly available at https://github.com/dani-capellan/LightTBNet.
Abstract:Tuberculosis (TB) is still considered a leading cause of death and a substantial threat to global child health. Both TB infection and disease are curable using antibiotics. However, most children who die of TB are never diagnosed or treated. In clinical practice, experienced physicians assess TB by examining chest X-rays (CXR). Pediatric CXR has specific challenges compared to adult CXR, which makes TB diagnosis in children more difficult. Computer-aided diagnosis systems supported by Artificial Intelligence have shown performance comparable to experienced radiologist TB readings, which could ease mass TB screening and reduce clinical burden. We propose a multi-view deep learning-based solution which, by following a proposed template, aims to automatically regionalize and extract lung and mediastinal regions of interest from pediatric CXR images where key TB findings may be present. Experimental results have shown accurate region extraction, which can be used for further analysis to confirm TB finding presence and severity assessment. Code publicly available at https://github.com/dani-capellan/pTB_LungRegionExtractor.