Abstract:Recent advancements in federated learning (FL) seek to increase client-level performance by fine-tuning client parameters on local data or personalizing architectures for the local task. Existing methods for such personalization either prune a global model or fine-tune a global model on a local client distribution. However, these existing methods either personalize at the expense of retaining important global knowledge, or predetermine network layers for fine-tuning, resulting in suboptimal storage of global knowledge within client models. Enlightened by the lottery ticket hypothesis, we first introduce a hypothesis for finding optimal client subnetworks to locally fine-tune while leaving the rest of the parameters frozen. We then propose a novel FL framework, FedSelect, using this procedure that directly personalizes both client subnetwork structure and parameters, via the simultaneous discovery of optimal parameters for personalization and the rest of parameters for global aggregation during training. We show that this method achieves promising results on CIFAR-10.
Abstract:In the Emergency Department (ED), accurate prediction of critical events using Electronic Health Records (EHR) allows timely intervention and effective resource allocation. Though many studies have suggested automatic prediction methods, their coarse-grained time resolutions limit their practical usage. Therefore, in this study, we propose an hourly prediction method of critical events in ED, i.e., mortality and vasopressor need. Through extensive experiments, we show that both 1) bi-modal fusion between EHR text and time-series data and 2) self-supervised predictive regularization using L2 loss between normalized context vector and EHR future time-series data improve predictive performance, especially the far-future prediction. Our uni-modal/bi-modal/bi-modal self-supervision scored 0.846/0.877/0.897 (0.824/0.855/0.886) and 0.817/0.820/0.858 (0.807/0.81/0.855) with mortality (far-future mortality) and with vasopressor need (far-future vasopressor need) prediction data in AUROC, respectively.