Abstract:The Universal Morphology UniMorph project is a collaborative effort to improve how NLP handles complex morphology across the world's languages. The project releases annotated morphological data using a universal tagset, the UniMorph schema. Each inflected form is associated with a lemma, which typically carries its underlying lexical meaning, and a bundle of morphological features from our schema. Additional supporting data and tools are also released on a per-language basis when available. UniMorph is based at the Center for Language and Speech Processing (CLSP) at Johns Hopkins University in Baltimore, Maryland and is sponsored by the DARPA LORELEI program. This paper details advances made to the collection, annotation, and dissemination of project resources since the initial UniMorph release described at LREC 2016. lexical resources} }
Abstract:The CoNLL--SIGMORPHON 2018 shared task on supervised learning of morphological generation featured data sets from 103 typologically diverse languages. Apart from extending the number of languages involved in earlier supervised tasks of generating inflected forms, this year the shared task also featured a new second task which asked participants to inflect words in sentential context, similar to a cloze task. This second task featured seven languages. Task 1 received 27 submissions and task 2 received 6 submissions. Both tasks featured a low, medium, and high data condition. Nearly all submissions featured a neural component and built on highly-ranked systems from the earlier 2017 shared task. In the inflection task (task 1), 41 of the 52 languages present in last year's inflection task showed improvement by the best systems in the low-resource setting. The cloze task (task 2) proved to be difficult, and few submissions managed to consistently improve upon both a simple neural baseline system and a lemma-repeating baseline.
Abstract:The CoNLL-SIGMORPHON 2017 shared task on supervised morphological generation required systems to be trained and tested in each of 52 typologically diverse languages. In sub-task 1, submitted systems were asked to predict a specific inflected form of a given lemma. In sub-task 2, systems were given a lemma and some of its specific inflected forms, and asked to complete the inflectional paradigm by predicting all of the remaining inflected forms. Both sub-tasks included high, medium, and low-resource conditions. Sub-task 1 received 24 system submissions, while sub-task 2 received 3 system submissions. Following the success of neural sequence-to-sequence models in the SIGMORPHON 2016 shared task, all but one of the submissions included a neural component. The results show that high performance can be achieved with small training datasets, so long as models have appropriate inductive bias or make use of additional unlabeled data or synthetic data. However, different biasing and data augmentation resulted in disjoint sets of inflected forms being predicted correctly, suggesting that there is room for future improvement.