Abstract:Prior studies show that the key to face anti-spoofing lies in the subtle image pattern, termed "spoof trace", e.g., color distortion, 3D mask edge, Moire pattern, and many others. Designing a generic anti-spoofing model to estimate those spoof traces can improve not only the generalization of the spoof detection, but also the interpretability of the model's decision. Yet, this is a challenging task due to the diversity of spoof types and the lack of ground truth in spoof traces. This work designs a novel adversarial learning framework to disentangle the spoof traces from input faces as a hierarchical combination of patterns at multiple scales. With the disentangled spoof traces, we unveil the live counterpart of the original spoof face, and further synthesize realistic new spoof faces after a proper geometric correction. Our method demonstrates superior spoof detection performance on both seen and unseen spoof scenarios while providing visually convincing estimation of spoof traces. Code is available at https://github.com/yaojieliu/ECCV20-STDN.
Abstract:Using printed photograph and replaying videos of biometric modalities, such as iris, fingerprint and face, are common attacks to fool the recognition systems for granting access as the genuine user. With the growing online person-to-person shopping (e.g., Ebay and Craigslist), such attacks also threaten those services, where the online photo illustration might not be captured from real items but from paper or digital screen. Thus, the study of anti-spoofing should be extended from modality-specific solutions to generic-object-based ones. In this work, we define and tackle the problem of Generic Object Anti-Spoofing (GOAS) for the first time. One significant cue to detect these attacks is the noise patterns introduced by the capture sensors and spoof mediums. Different sensor/medium combinations can result in diverse noise patterns. We propose a GAN-based architecture to synthesize and identify the noise patterns from seen and unseen medium/sensor combinations. We show that the procedure of synthesis and identification are mutually beneficial. We further demonstrate the learned GOAS models can directly contribute to modality-specific anti-spoofing without domain transfer. The code and GOSet dataset are available at cvlab.cse.msu.edu/project-goas.html.
Abstract:Detecting manipulated facial images and videos is an increasingly important topic in digital media forensics. As advanced synthetic face generation and manipulation methods become available, new types of fake face representations are being created and raise significant concerns for their implications in social media. Hence, it is crucial to detect the manipulated face image and locate manipulated facial regions. Instead of simply using a multi-task learning approach to simultaneously detect manipulated images and predict the manipulated mask (regions), we propose to utilize the attention mechanism to process and improve the feature maps of the classifier model. The learned attention maps highlight the informative regions to further improve the binary classification power, and also visualize the manipulated regions. In addition, to enable our study of manipulated facial images detection and localization, we have collected the first database which contains numerous types of facial forgeries. With this dataset, we perform a thorough analysis of data-driven fake face detection. We demonstrate that the use of an attention mechanism improves manipulated facial region localization and fake detection.
Abstract:Face anti-spoofing is designed to keep face recognition systems from recognizing fake faces as the genuine users. While advanced face anti-spoofing methods are developed, new types of spoof attacks are also being created and becoming a threat to all existing systems. We define the detection of unknown spoof attacks as Zero-Shot Face Anti-spoofing (ZSFA). Previous works of ZSFA only study 1-2 types of spoof attacks, such as print/replay attacks, which limits the insight of this problem. In this work, we expand the ZSFA problem to a wide range of 13 types of spoof attacks, including print attack, replay attack, 3D mask attacks, and so on. A novel Deep Tree Network (DTN) is proposed to tackle the ZSFA. The tree is learned to partition the spoof samples into semantic sub-groups in an unsupervised fashion. When a data sample arrives, being know or unknown attacks, DTN routes it to the most similar spoof cluster, and make the binary decision. In addition, to enable the study of ZSFA, we introduce the first face anti-spoofing database that contains diverse types of spoof attacks. Experiments show that our proposed method achieves the state of the art on multiple testing protocols of ZSFA.