Abstract:The objective of pansharpening and hypersharpening is to accurately combine a high-resolution panchromatic (PAN) image with a low-resolution multispectral (MS) or hyperspectral (HS) image, respectively. Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches. These techniques involve unrolling the steps of the optimization scheme derived from the minimization of an energy into a deep learning framework, resulting in efficient and highly interpretable architectures. In this paper, we propose a model-based deep unfolded method for satellite image fusion. Our approach is based on a variational formulation that incorporates the classic observation model for MS/HS data, a high-frequency injection constraint based on the PAN image, and an arbitrary convex prior. For the unfolding stage, we introduce upsampling and downsampling layers that use geometric information encoded in the PAN image through residual networks. The backbone of our method is a multi-head attention residual network (MARNet), which replaces the proximity operator in the optimization scheme and combines multiple head attentions with residual learning to exploit image self-similarities via nonlocal operators defined in terms of patches. Additionally, we incorporate a post-processing module based on the MARNet architecture to further enhance the quality of the fused images. Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method and its ability to generalize across different sensor configurations and varying spatial and spectral resolutions. The source code will be available at https://github.com/TAMI-UIB/MARNet.
Abstract:The demosaicking provokes the spatial and color correlation of noise, which is afterwards enhanced by the imaging pipeline. The correct removal previous or simultaneously with the demosaicking process is not usually considered in the literature. We present a novel imaging chain including a denoising of the Bayer CFA and a demosaicking method for image sequences. The proposed algorithm uses a spatio-temporal patch method for the noise removal and demosaicking of the CFA. The experimentation, including real examples, illustrates the superior performance of the proposed chain, avoiding the creation of artifacts and colored spots in the final image.
Abstract:Pansharpening techniques aim at fusing low-resolution multispectral (MS) images and high-resolution panchromatic (PAN) images to produce high-resolution MS images. Despite significant progress in the field, spectral and spatial distortions might still compromise the quality of the results. We introduce a restoration strategy to mitigate artifacts of fused products. After applying the Principal Component Analysis (PCA) transform to a pansharpened image, the chromatic components are filtered conditionally to the geometry of PAN. The structural component is then replaced by the locally histogram-matched PAN for spatial enhancement. Experimental results illustrate the efficiency of the proposed restoration chain.
Abstract:Most satellites decouple the acquisition of a panchromatic image at high spatial resolution from the acquisition of a multispectral image at lower spatial resolution. Pansharpening is a fusion technique used to increase the spatial resolution of the multispectral data while simultaneously preserving its spectral information. In this paper, we consider pansharpening as an optimization problem minimizing a cost function with a nonlocal regularization term. The energy functional which is to be minimized decouples for each band, thus permitting the application to misregistered spectral components. This requirement is achieved by dropping the, commonly used, assumption that relates the spectral and panchromatic modalities by a linear transformation. Instead, a new constraint that preserves the radiometric ratio between the panchromatic and each spectral component is introduced. An exhaustive performance comparison of the proposed fusion method with several classical and state-of-the-art pansharpening techniques illustrates its superiority in preserving spatial details, reducing color distortions, and avoiding the creation of aliasing artifacts.
Abstract:Even after over two decades, the total variation (TV) remains one of the most popular regularizations for image processing problems and has sparked a tremendous amount of research, particularly to move from scalar to vector-valued functions. In this paper, we consider the gradient of a color image as a three dimensional matrix or tensor with dimensions corresponding to the spatial extend, the differences to other pixels, and the spectral channels. The smoothness of this tensor is then measured by taking different norms along the different dimensions. Depending on the type of these norms one obtains very different properties of the regularization, leading to novel models for color images. We call this class of regularizations collaborative total variation (CTV). On the theoretical side, we characterize the dual norm, the subdifferential and the proximal mapping of the proposed regularizers. We further prove, with the help of the generalized concept of singular vectors, that an $\ell^{\infty}$ channel coupling makes the most prior assumptions and has the greatest potential to reduce color artifacts. Our practical contributions consist of an extensive experimental section where we compare the performance of a large number of collaborative TV methods for inverse problems like denoising, deblurring and inpainting.