Abstract:We propose EmoLat, a novel emotion latent space that enables fine-grained, text-driven image sentiment transfer by modeling cross-modal correlations between textual semantics and visual emotion features. Within EmoLat, an emotion semantic graph is constructed to capture the relational structure among emotions, objects, and visual attributes. To enhance the discriminability and transferability of emotion representations, we employ adversarial regularization, aligning the latent emotion distributions across modalities. Building upon EmoLat, a cross-modal sentiment transfer framework is proposed to manipulate image sentiment via joint embedding of text and EmoLat features. The network is optimized using a multi-objective loss incorporating semantic consistency, emotion alignment, and adversarial regularization. To support effective modeling, we construct EmoSpace Set, a large-scale benchmark dataset comprising images with dense annotations on emotions, object semantics, and visual attributes. Extensive experiments on EmoSpace Set demonstrate that our approach significantly outperforms existing state-of-the-art methods in both quantitative metrics and qualitative transfer fidelity, establishing a new paradigm for controllable image sentiment editing guided by textual input. The EmoSpace Set and all the code are available at http://github.com/JingVIPLab/EmoLat.
Abstract:Attribute-specific fashion retrieval (ASFR) is a challenging information retrieval task, which has attracted increasing attention in recent years. Different from traditional fashion retrieval which mainly focuses on optimizing holistic similarity, the ASFR task concentrates on attribute-specific similarity, resulting in more fine-grained and interpretable retrieval results. As the attribute-specific similarity typically corresponds to the specific subtle regions of images, we propose a Region-to-Patch Framework (RPF) that consists of a region-aware branch and a patch-aware branch to extract fine-grained attribute-related visual features for precise retrieval in a coarse-to-fine manner. In particular, the region-aware branch is first to be utilized to locate the potential regions related to the semantic of the given attribute. Then, considering that the located region is coarse and still contains the background visual contents, the patch-aware branch is proposed to capture patch-wise attribute-related details from the previous amplified region. Such a hybrid architecture strikes a proper balance between region localization and feature extraction. Besides, different from previous works that solely focus on discriminating the attribute-relevant foreground visual features, we argue that the attribute-irrelevant background features are also crucial for distinguishing the detailed visual contexts in a contrastive manner. Therefore, a novel E-InfoNCE loss based on the foreground and background representations is further proposed to improve the discrimination of attribute-specific representation. Extensive experiments on three datasets demonstrate the effectiveness of our proposed framework, and also show a decent generalization of our RPF on out-of-domain fashion images. Our source code is available at https://github.com/HuiGuanLab/RPF.