Abstract:We propose SelfSplat, a novel 3D Gaussian Splatting model designed to perform pose-free and 3D prior-free generalizable 3D reconstruction from unposed multi-view images. These settings are inherently ill-posed due to the lack of ground-truth data, learned geometric information, and the need to achieve accurate 3D reconstruction without finetuning, making it difficult for conventional methods to achieve high-quality results. Our model addresses these challenges by effectively integrating explicit 3D representations with self-supervised depth and pose estimation techniques, resulting in reciprocal improvements in both pose accuracy and 3D reconstruction quality. Furthermore, we incorporate a matching-aware pose estimation network and a depth refinement module to enhance geometry consistency across views, ensuring more accurate and stable 3D reconstructions. To present the performance of our method, we evaluated it on large-scale real-world datasets, including RealEstate10K, ACID, and DL3DV. SelfSplat achieves superior results over previous state-of-the-art methods in both appearance and geometry quality, also demonstrates strong cross-dataset generalization capabilities. Extensive ablation studies and analysis also validate the effectiveness of our proposed methods. Code and pretrained models are available at https://gynjn.github.io/selfsplat/
Abstract:Motion detection algorithms that can be applied to surveillance cameras such as CCTV (Closed Circuit Television) have been studied extensively. Motion detection algorithm is mostly based on background subtraction. One main issue in this technique is that false positives of dynamic backgrounds such as wind shaking trees and flowing rivers might occur. In this paper, we proposed a method to search for dynamic background region by analyzing the video and removing false positives by re-checking false positives. The proposed method was evaluated based on CDnet 2012/2014 dataset obtained at "changedetection.net" site. We also compared its processing speed with other algorithms.