Abstract:People are increasingly using technologies equipped with large language models (LLM) to write texts for formal communication, which raises two important questions at the intersection of technology and society: Who do LLMs write like (model alignment); and can LLMs be prompted to change who they write like (model steerability). We investigate these questions in the high-stakes context of undergraduate admissions at a selective university by comparing lexical and sentence variation between essays written by 30,000 applicants to two types of LLM-generated essays: one prompted with only the essay question used by the human applicants; and another with additional demographic information about each applicant. We consistently find that both types of LLM-generated essays are linguistically distinct from human-authored essays, regardless of the specific model and analytical approach. Further, prompting a specific sociodemographic identity is remarkably ineffective in aligning the model with the linguistic patterns observed in human writing from this identity group. This holds along the key dimensions of sex, race, first-generation status, and geographic location. The demographically prompted and unprompted synthetic texts were also more similar to each other than to the human text, meaning that prompting did not alleviate homogenization. These issues of model alignment and steerability in current LLMs raise concerns about the use of LLMs in high-stakes contexts.
Abstract:To measure bias, we encourage teams to consider using AUC Gap: the absolute difference between the highest and lowest test AUC for subgroups (e.g., gender, race, SES, prior knowledge). It is agnostic to the AI/ML algorithm used and it captures the disparity in model performance for any number of subgroups, which enables non-binary fairness assessments such as for intersectional identity groups. The teams use a wide range of AI/ML models in pursuit of a common goal of doubling math achievement in low-income middle schools. Ensuring that the models, which are trained on datasets collected in many different contexts, do not introduce or amplify biases is important for achieving the goal. We offer here a versatile and easy-to-compute measure of model bias for all the teams in order to create a common benchmark and an analytical basis for sharing what strategies have worked for different teams.
Abstract:University admission at many highly selective institutions uses a holistic review process, where all aspects of the application, including protected attributes (e.g., race, gender), grades, essays, and recommendation letters are considered, to compose an excellent and diverse class. In this study, we empirically evaluate how influential protected attributes are for predicting admission decisions using a machine learning (ML) model, and in how far textual information (e.g., personal essay, teacher recommendation) may substitute for the loss of protected attributes in the model. Using data from 14,915 applicants to an undergraduate admission office at a selective U.S. institution in the 2022-2023 cycle, we find that the exclusion of protected attributes from the ML model leads to substantially reduced admission-prediction performance. The inclusion of textual information via both a TF-IDF representation and a Latent Dirichlet allocation (LDA) model partially restores model performance, but does not appear to provide a full substitute for admitting a similarly diverse class. In particular, while the text helps with gender diversity, the proportion of URM applicants is severely impacted by the exclusion of protected attributes, and the inclusion of new attributes generated from the textual information does not recover this performance loss.