Abstract:The fast development of location-based social networks (LBSNs) has led to significant changes in society, resulting in popular studies of using LBSN data for socioeconomic prediction, e.g., regional population and commercial activity estimation. Existing studies design various graphs to model heterogeneous LBSN data, and further apply graph representation learning methods for socioeconomic prediction. However, these approaches heavily rely on heuristic ideas and expertise to extract task-relevant knowledge from diverse data, which may not be optimal for specific tasks. Additionally, they tend to overlook the inherent relationships between different indicators, limiting the prediction accuracy. Motivated by the remarkable abilities of large language models (LLMs) in commonsense reasoning, embedding, and multi-agent collaboration, in this work, we synergize LLM agents and knowledge graph for socioeconomic prediction. We first construct a location-based knowledge graph (LBKG) to integrate multi-sourced LBSN data. Then we leverage the reasoning power of LLM agent to identify relevant meta-paths in the LBKG for each type of socioeconomic prediction task, and design a semantic-guided attention module for knowledge fusion with meta-paths. Moreover, we introduce a cross-task communication mechanism to further enhance performance by enabling knowledge sharing across tasks at both LLM agent and KG levels. On the one hand, the LLM agents for different tasks collaborate to generate more diverse and comprehensive meta-paths. On the other hand, the embeddings from different tasks are adaptively merged for better socioeconomic prediction. Experiments on two datasets demonstrate the effectiveness of the synergistic design between LLM and KG, providing insights for information sharing across socioeconomic prediction tasks.
Abstract:Citation networks are critical in modern science, and predicting which previous papers (candidates) will a new paper (query) cite is a critical problem. However, the roles of a paper's citations vary significantly, ranging from foundational knowledge basis to superficial contexts. Distinguishing these roles requires a deeper understanding of the logical relationships among papers, beyond simple edges in citation networks. The emergence of LLMs with textual reasoning capabilities offers new possibilities for discerning these relationships, but there are two major challenges. First, in practice, a new paper may select its citations from gigantic existing papers, where the texts exceed the context length of LLMs. Second, logical relationships between papers are implicit, and directly prompting an LLM to predict citations may result in surface-level textual similarities rather than the deeper logical reasoning. In this paper, we introduce the novel concept of core citation, which identifies the critical references that go beyond superficial mentions. Thereby, we elevate the citation prediction task from a simple binary classification to distinguishing core citations from both superficial citations and non-citations. To address this, we propose $\textbf{HLM-Cite}$, a $\textbf{H}$ybrid $\textbf{L}$anguage $\textbf{M}$odel workflow for citation prediction, which combines embedding and generative LMs. We design a curriculum finetune procedure to adapt a pretrained text embedding model to coarsely retrieve high-likelihood core citations from vast candidates and then design an LLM agentic workflow to rank the retrieved papers through one-shot reasoning, revealing the implicit relationships among papers. With the pipeline, we can scale the candidate sets to 100K papers. We evaluate HLM-Cite across 19 scientific fields, demonstrating a 17.6% performance improvement comparing SOTA methods.