Abstract:Non-exemplar class-incremental learning (NECIL) is to resist catastrophic forgetting without saving old class samples. Prior methodologies generally employ simple rules to generate features for replaying, suffering from large distribution gap between replayed features and real ones. To address the aforementioned issue, we propose a simple, yet effective \textbf{Diff}usion-based \textbf{F}eature \textbf{R}eplay (\textbf{DiffFR}) method for NECIL. First, to alleviate the limited representational capacity caused by fixing the feature extractor, we employ Siamese-based self-supervised learning for initial generalizable features. Second, we devise diffusion models to generate class-representative features highly similar to real features, which provides an effective way for exemplar-free knowledge memorization. Third, we introduce prototype calibration to direct the diffusion model's focus towards learning the distribution shapes of features, rather than the entire distribution. Extensive experiments on public datasets demonstrate significant performance gains of our DiffFR, outperforming the state-of-the-art NECIL methods by 3.0\% in average. The code will be made publicly available soon.
Abstract:Incremental object detection (IOD) aims to sequentially learn new classes, while maintaining the capability to locate and identify old ones. As the training data arrives with annotations only with new classes, IOD suffers from catastrophic forgetting. Prior methodologies mainly tackle the forgetting issue through knowledge distillation and exemplar replay, ignoring the conflict between limited model capacity and increasing knowledge. In this paper, we explore \textit{dynamic object queries} for incremental object detection built on Transformer architecture. We propose the \textbf{Dy}namic object \textbf{Q}uery-based \textbf{DE}tection \textbf{TR}ansformer (DyQ-DETR), which incrementally expands the model representation ability to achieve stability-plasticity tradeoff. First, a new set of learnable object queries are fed into the decoder to represent new classes. These new object queries are aggregated with those from previous phases to adapt both old and new knowledge well. Second, we propose the isolated bipartite matching for object queries in different phases, based on disentangled self-attention. The interaction among the object queries at different phases is eliminated to reduce inter-class confusion. Thanks to the separate supervision and computation over object queries, we further present the risk-balanced partial calibration for effective exemplar replay. Extensive experiments demonstrate that DyQ-DETR significantly surpasses the state-of-the-art methods, with limited parameter overhead. Code will be made publicly available.