Abstract:BEV perception is of great importance in the field of autonomous driving, serving as the cornerstone of planning, controlling, and motion prediction. The quality of the BEV feature highly affects the performance of BEV perception. However, taking the noises in camera parameters and LiDAR scans into consideration, we usually obtain BEV representation with harmful noises. Diffusion models naturally have the ability to denoise noisy samples to the ideal data, which motivates us to utilize the diffusion model to get a better BEV representation. In this work, we propose an end-to-end framework, named DiffBEV, to exploit the potential of diffusion model to generate a more comprehensive BEV representation. To the best of our knowledge, we are the first to apply diffusion model to BEV perception. In practice, we design three types of conditions to guide the training of the diffusion model which denoises the coarse samples and refines the semantic feature in a progressive way. What's more, a cross-attention module is leveraged to fuse the context of BEV feature and the semantic content of conditional diffusion model. DiffBEV achieves a 25.9% mIoU on the nuScenes dataset, which is 6.2% higher than the best-performing existing approach. Quantitative and qualitative results on multiple benchmarks demonstrate the effectiveness of DiffBEV in BEV semantic segmentation and 3D object detection tasks. The code will be available soon.
Abstract:Autonomous driving requires accurate and detailed Bird's Eye View (BEV) semantic segmentation for decision making, which is one of the most challenging tasks for high-level scene perception. Feature transformation from frontal view to BEV is the pivotal technology for BEV semantic segmentation. Existing works can be roughly classified into two categories, i.e., Camera model-Based Feature Transformation (CBFT) and Camera model-Free Feature Transformation (CFFT). In this paper, we empirically analyze the vital differences between CBFT and CFFT. The former transforms features based on the flat-world assumption, which may cause distortion of regions lying above the ground plane. The latter is limited in the segmentation performance due to the absence of geometric priors and time-consuming computation. In order to reap the benefits and avoid the drawbacks of CBFT and CFFT, we propose a novel framework with a Hybrid Feature Transformation module (HFT). Specifically, we decouple the feature maps produced by HFT for estimating the layout of outdoor scenes in BEV. Furthermore, we design a mutual learning scheme to augment hybrid transformation by applying feature mimicking. Notably, extensive experiments demonstrate that with negligible extra overhead, HFT achieves a relative improvement of 13.3% on the Argoverse dataset and 16.8% on the KITTI 3D Object datasets compared to the best-performing existing method. The codes are available at https://github.com/JiayuZou2020/HFT.