Abstract:LLM-as-a-Judge leverages the generative and reasoning capabilities of large language models (LLMs) to evaluate LLM responses across diverse scenarios, providing accurate preference signals. This approach plays a vital role in aligning LLMs with human values, ensuring ethical and reliable AI outputs that align with societal norms. Recent studies have raised many methods to train LLM as generative judges, but most of them are data consuming or lack accuracy, and only focus on LLM's judge ability. In this work, we regard judge ability as a general ability of LLM and implement a two-stage training approach, comprising supervised fine-tuning (SFT) warm-up and direct preference optimization (DPO) enhancement, to achieve judge style adaptation and improve judgment accuracy. Additionally, we introduce an efficient data synthesis method to generate judgmental content. Experimental results demonstrate that our approach, utilizing only about 2% to 40% of the data required by other methods, achieves SOTA performance on RewardBench. Furthermore, our training method enhances the general capabilities of the model by constructing complicated judge task, and the judge signals provided by our model have significantly enhanced the downstream DPO training performance of our internal models in our test to optimize policy model with Judge Model. We also open-source our model weights and training data to facilitate further research.
Abstract:Subgraph representation learning based on Graph Neural Network (GNN) has broad applications in chemistry and biology, such as molecule property prediction and gene collaborative function prediction. On the other hand, graph augmentation techniques have shown promising results in improving graph-based and node-based classification tasks but are rarely explored in the GNN-based subgraph representation learning literature. In this work, we developed a novel multiview augmentation mechanism to improve subgraph representation learning and thus the accuracy of downstream prediction tasks. The augmentation technique creates multiple variants of subgraphs and embeds these variants into the original graph to achieve both high training efficiency, scalability, and improved accuracy. Experiments on several real-world subgraph benchmarks demonstrate the superiority of our proposed multi-view augmentation techniques.