Abstract:With the development of the financial industry, credit default prediction, as an important task in financial risk management, has received increasing attention. Traditional credit default prediction methods mostly rely on machine learning models, such as decision trees and random forests, but these methods have certain limitations in processing complex data and capturing potential risk patterns. To this end, this paper proposes a deep learning model based on the combination of convolutional neural networks (CNN) and Transformer for credit user default prediction. The model combines the advantages of CNN in local feature extraction with the ability of Transformer in global dependency modeling, effectively improving the accuracy and robustness of credit default prediction. Through experiments on public credit default datasets, the results show that the CNN+Transformer model outperforms traditional machine learning models, such as random forests and XGBoost, in multiple evaluation indicators such as accuracy, AUC, and KS value, demonstrating its powerful ability in complex financial data modeling. Further experimental analysis shows that appropriate optimizer selection and learning rate adjustment play a vital role in improving model performance. In addition, the ablation experiment of the model verifies the advantages of the combination of CNN and Transformer and proves the complementarity of the two in credit default prediction. This study provides a new idea for credit default prediction and provides strong support for risk assessment and intelligent decision-making in the financial field. Future research can further improve the prediction effect and generalization ability by introducing more unstructured data and improving the model architecture.
Abstract:This paper delves into the application of adversarial domain adaptation (ADA) for enhancing credit risk assessment in financial institutions. It addresses two critical challenges: the cold start problem, where historical lending data is scarce, and the data imbalance issue, where high-risk transactions are underrepresented. The paper introduces an improved ADA framework, the Wasserstein Distance Weighted Adversarial Domain Adaptation Network (WD-WADA), which leverages the Wasserstein distance to align source and target domains effectively. The proposed method includes an innovative weighted strategy to tackle data imbalance, adjusting for both the class distribution and the difficulty level of predictions. The paper demonstrates that WD-WADA not only mitigates the cold start problem but also provides a more accurate measure of domain differences, leading to improved cross-domain credit risk assessment. Extensive experiments on real-world credit datasets validate the model's effectiveness, showcasing superior performance in cross-domain learning, classification accuracy, and model stability compared to traditional methods.