Abstract:The proliferation of Internet memes in the age of social media necessitates effective identification of harmful ones. Due to the dynamic nature of memes, existing data-driven models may struggle in low-resource scenarios where only a few labeled examples are available. In this paper, we propose an agency-driven framework for low-resource harmful meme detection, employing both outward and inward analysis with few-shot annotated samples. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first retrieve relative memes with annotations to leverage label information as auxiliary signals for the LMM agent. Then, we elicit knowledge-revising behavior within the LMM agent to derive well-generalized insights into meme harmfulness. By combining these strategies, our approach enables dialectical reasoning over intricate and implicit harm-indicative patterns. Extensive experiments conducted on three meme datasets demonstrate that our proposed approach achieves superior performance than state-of-the-art methods on the low-resource harmful meme detection task.
Abstract:Addressing the discrepancies between predictions and actual outcomes often aids individuals in expanding their thought processes and engaging in reflection, thereby facilitating reasoning in the correct direction. In this paper, we introduce $\textbf{PreAct}$, an agent framework that integrates $\textbf{pre}$diction with $\textbf{rea}$soning and $\textbf{act}$ion. Leveraging the information provided by predictions, a large language model (LLM) based agent can offer more diversified and strategically oriented reasoning, which in turn leads to more effective actions that help the agent complete complex tasks. Our experiments demonstrate that PreAct outperforms the ReAct approach in accomplishing complex tasks and that PreAct can be co-enhanced when combined with Reflexion methods. We prompt the model with different numbers of historical predictions and find that historical predictions have a sustained positive effect on LLM planning. The differences in single-step reasoning between PreAct and ReAct show that PreAct indeed offers advantages in terms of diversity and strategic directivity over ReAct.