Faculty of Law, University of Macau, Macau, China
Abstract:The paper addresses some fundamental and hotly debated issues for high-stakes event predictions underpinning the computational approach to social sciences. We question several prevalent views against machine learning and outline a new paradigm that highlights the promises and promotes the infusion of computational methods and conventional social science approaches.
Abstract:Effective features can improve the performance of a model, which can thus help us understand the characteristics and underlying structure of complex data. Previous feature selection methods usually cannot keep more local structure information. To address the defects previously mentioned, we propose a novel supervised orthogonal least square regression model with feature weighting for feature selection. The optimization problem of the objection function can be solved by employing generalized power iteration (GPI) and augmented Lagrangian multiplier (ALM) methods. Experimental results show that the proposed method can more effectively reduce the feature dimensionality and obtain better classification results than traditional feature selection methods. The convergence of our iterative method is proved as well. Consequently, the effectiveness and superiority of the proposed method are verified both theoretically and experimentally.