Abstract:This paper offers a thorough analysis of the coverage performance of Low Earth Orbit (LEO) satellite networks using a strongest satellite association approach, with a particular emphasis on shadowing effects modeled through a Poisson point process (PPP)-based network framework. We derive an analytical expression for the coverage probability, which incorporates key system parameters and a distance-dependent shadowing probability function, explicitly accounting for both line-of-sight and non-line-of-sight propagation channels. To enhance the practical relevance of our findings, we provide both lower and upper bounds for the coverage probability and introduce a closed-form solution based on a simplified shadowing model. Our analysis reveals several important network design insights, including the enhancement of coverage probability by distance-dependent shadowing effects and the identification of an optimal satellite altitude that balances beam gain benefits with interference drawbacks. Notably, our PPP-based network model shows strong alignment with other established models, confirming its accuracy and applicability across a variety of satellite network configurations. The insights gained from our analysis are valuable for optimizing LEO satellite deployment strategies and improving network performance in diverse scenarios.
Abstract:Low Earth orbit (LEO) satellite networks with mega constellations have the potential to provide 5G and beyond services ubiquitously. However, these networks may introduce mutual interference to both satellite and terrestrial networks, particularly when sharing spectrum resources. In this paper, we present a system-level performance analysis to address these interference issues using the tool of stochastic geometry. We model the spatial distributions of satellites, satellite users, terrestrial base stations (BSs), and terrestrial users using independent Poisson point processes on the surfaces of concentric spheres. Under these spatial models, we derive analytical expressions for the ergodic spectral efficiency of uplink (UL) and downlink (DL) satellite networks when they share spectrum with both UL and DL terrestrial networks. These derived ergodic expressions capture comprehensive network parameters, including the densities of satellite and terrestrial networks, the path-loss exponent, and fading. From our analysis, we determine the conditions under which spectrum sharing with UL terrestrial networks is advantageous for both UL and DL satellite networks. Our key finding is that the optimal spectrum sharing configuration among the four possible configurations depends on the density ratio between terrestrial BSs and users, providing a design guideline for spectrum management. Simulation results confirm the accuracy of our derived expressions.
Abstract:The recent success of large language models (LLMs) has spurred their application in various fields. In particular, there have been efforts to integrate LLMs into various aspects of wireless communication systems. The use of LLMs in wireless communication systems has the potential to realize artificial general intelligence (AGI)-enabled wireless networks. In this paper, we investigate an LLM-based resource allocation scheme for wireless communication systems. Specifically, we formulate a simple resource allocation problem involving two transmit pairs and develop an LLM-based resource allocation approach that aims to maximize either energy efficiency or spectral efficiency. Additionally, we consider the joint use of low-complexity resource allocation techniques to compensate for the reliability shortcomings of the LLM-based scheme. After confirming the applicability and feasibility of LLM-based resource allocation, we address several key technical challenges that remain in applying LLMs in practice.
Abstract:In frequency-division duplexing (FDD) multiple-input multiple-output (MIMO) systems, obtaining accurate downlink channel state information (CSI) for precoding is vastly challenging due to the tremendous feedback overhead with the growing number of antennas. Utilizing uplink pilots for downlink CSI estimation is a promising approach that can eliminate CSI feedback. However, the downlink CSI estimation accuracy diminishes significantly as the number of channel paths increases, resulting in reduced spectral efficiency. In this paper, we demonstrate that achieving downlink spectral efficiency comparable to perfect CSI is feasible by combining uplink CSI with limited downlink CSI feedback information. Our proposed downlink CSI feedback strategy transmits quantized phase information of downlink channel paths, deviating from conventional limited methods. We put forth a mean square error (MSE)-optimal downlink channel reconstruction method by jointly exploiting the uplink CSI and the limited downlink CSI. Armed with the MSE-optimal estimator, we derive the MSE as a function of the number of feedback bits for phase quantization. Subsequently, we present an optimal feedback bit allocation method for minimizing the MSE in the reconstructed channel through phase quantization. Utilizing a robust downlink precoding technique, we establish that the proposed downlink channel reconstruction method is sufficient for attaining a sum-spectral efficiency comparable to perfect CSI.
Abstract:A critical hindrance to realize frequency division duplex (FDD) massive multi-input multi-output (MIMO) systems is overhead associated with downlink channel state information at the transmitter (CSIT) acquisition. To address this challenge, we propose a novel framework that achieves robust performances while completely eliminating downlink CSIT training and feedback. Specifically, by exploiting partial frequency invariance of channel parameters between the uplink (UL) and downlink (DL), we adopt the 2D-Newtonized orthogonal matching pursuit (2D-NOMP) algorithm to reconstruct DL CSIT from UL training. Due to inherent discrepancies arising from a carrier frequency difference between two disjoint bands, however, the multi-user interference is inevitable. To overcome this, we propose a precoding method that employs rate-splitting multiple access (RSMA) and also develop an error covariance matrix (ECM) estimation method by using the observed Fisher information matrix (O-FIM). We find that this ECM estimation is crucial for our precoding design in maximizing the sum spectral efficiency (SE). Simulation results show that our method significantly improves the sum SE compared to other state-of-the-art approaches, underscoring the importance of our ECM estimation.
Abstract:Integrated satellite-terrestrial networks (ISTNs) can significantly expand network coverage while diminishing reliance on terrestrial infrastructure. Despite the enticing potential of ISTNs, there is no comprehensive mathematical performance analysis framework for these emerging networks. In this paper, we introduce a tractable approach to analyze the downlink coverage performance of multi-tier ISTNs, where each network tier operates with orthogonal frequency bands. The proposed approach is to model the spatial distribution of cellular and satellite base stations using homogeneous Poisson point processes arranged on concentric spheres with varying radii. Central to our analysis is a displacement principle that transforms base station locations on different spheres into projected rings while preserving the distance distribution to the typical user. By incorporating the effects of Shadowed-Rician fading on satellite channels and employing orthogonal frequency bands, we derive analytical expressions for coverage in the integrated networks while keeping full generality. Our primary discovery is that network performance reaches its maximum when selecting the optimal density ratio of users associated with the network according to the density and the channel parameters of each network. Through simulations, we validate the precision of our derived expressions.
Abstract:Integrated sensing and communication (ISAC) is widely recognized as a fundamental enabler for future wireless communications. In this paper, we present a joint communication and radar beamforming framework for maximizing a sum spectral efficiency (SE) while guaranteeing desired radar performance with imperfect channel state information (CSI) in multi-user and multi-target ISAC systems. To this end, we adopt either a radar transmit beam mean square error (MSE) or receive signal-to-clutter-plus-noise ratio (SCNR) as a radar performance constraint of a sum SE maximization problem. To resolve inherent challenges such as non-convexity and imperfect CSI, we reformulate the problems and identify first-order optimality conditions for the joint radar and communication beamformer. Turning the condition to a nonlinear eigenvalue problem with eigenvector dependency (NEPv), we develop an alternating method which finds the joint beamformer through power iteration and a Lagrangian multiplier through binary search. The proposed framework encompasses both the radar metrics and is robust to channel estimation error with low complexity. Simulations validate the proposed methods. In particular, we observe that the MSE and SCNR constraints exhibit complementary performance depending on the operating environment, which manifests the importance of the proposed comprehensive and robust optimization framework.
Abstract:In this paper, we investigate the coverage performance of downlink satellite networks employing dynamic coordinated beamforming. Our approach involves modeling the spatial arrangement of satellites and users using Poisson point processes situated on concentric spheres. We derive analytical expressions for the coverage probability, which take into account the in-cluster geometry of the coordinated satellite set. These expressions are formulated in terms of various parameters, including the number of antennas per satellite, satellite density, fading characteristics, and path-loss exponent. To offer a more intuitive understanding, we also develop an approximation for the coverage probability. Furthermore, by considering the distribution of normalized distances, we derive the spatially averaged coverage probability, thereby validating the advantages of coordinated beamforming from a spatial average perspective. Our primary finding is that dynamic coordinated beamforming significantly improves coverage compared to the absence of satellite coordination, in direct proportion to the number of antennas on each satellite. Moreover, we observe that the optimal cluster size, which maximizes the ergodic spectral efficiency, increases with higher satellite density, provided that the number of antennas on the satellites is sufficiently large. Our findings are corroborated by simulation results, confirming the accuracy of the derived expressions.
Abstract:Full-duplex communication systems have the potential to achieve significantly higher data rates and lower latency compared to their half-duplex counterparts. This advantage stems from their ability to transmit and receive data simultaneously. However, to enable successful full-duplex operation, the primary challenge lies in accurately eliminating strong self-interference (SI). Overcoming this challenge involves addressing various issues, including the nonlinearity of power amplifiers, the time-varying nature of the SI channel, and the non-stationary transmit data distribution. In this article, we present a review of recent advancements in digital self-interference cancellation (SIC) algorithms. Our focus is on comparing the effectiveness of adaptable model-based SIC methods with their model-free counterparts that leverage data-driven machine learning techniques. Through our comparison study under practical scenarios, we demonstrate that the model-based SIC approach offers a more robust solution to the time-varying SI channel and the non-stationary transmission, achieving optimal SIC performance in terms of the convergence rate while maintaining low computational complexity. To validate our findings, we conduct experiments using a software-defined radio testbed that conforms to the IEEE 802.11a standards. The experimental results demonstrate the robustness of the model-based SIC methods, providing practical evidence of their effectiveness.
Abstract:With the growing interest in satellite networks, satellite-terrestrial integrated networks (STINs) have gained significant attention because of their potential benefits. However, due to the lack of a tractable network model for the STIN architecture, analytical studies allowing one to investigate the performance of such networks are not yet available. In this work, we propose a unified network model that jointly captures satellite and terrestrial networks into one analytical framework. Our key idea is based on Poisson point processes distributed on concentric spheres, assigning a random height to each point as a mark. This allows one to consider each point as a source of desired signal or a source of interference while ensuring visibility to the typical user. Thanks to this model, we derive the probability of coverage of STINs as a function of major system parameters, chiefly path-loss exponent, satellites and terrestrial base stations' height distributions and density, transmit power and biasing factors. Leveraging the analysis, we concretely explore two benefits that STINs provide: i) coverage extension in remote rural areas and ii) data offloading in dense urban areas.