Abstract:As cities strive to address urban mobility challenges, combining autonomous transportation technologies with intelligent infrastructure presents an opportunity to transform how people move within urban environments. Autonomous shuttles are particularly suited for adaptive and responsive public transport for the first and last mile, connecting with smart infrastructure to enhance urban transit. This paper presents the concept, implementation, and evaluation of a proof-of-concept deployment of an autonomous shuttle integrated with smart infrastructure at a public fair. The infrastructure includes two perception-equipped bus stops and a connected pedestrian intersection, all linked through a central communication and control hub. Our key contributions include the development of a comprehensive system architecture for "smart" bus stops, the integration of multiple urban locations into a cohesive smart transport ecosystem, and the creation of adaptive shuttle behavior for automated driving. Additionally, we publish an open source dataset and a Vehicle-to-X (V2X) driver to support further research. Finally, we offer an outlook on future research directions and potential expansions of the demonstrated technologies and concepts.
Abstract:The European Green Deal aims to achieve climate neutrality by 2050, requiring the transportation industry to improve emission efficiency as it accounts for 20% of global CO2 emissions. This study uses an agent-based simulation to analyze the sustainability impacts of shared autonomous shuttles. We forecast travel demands for 2050 and simulate regulatory interventions in the form of replacing private cars with a fleet of shared autonomous shuttles in specific areas. We derive driving-related emissions, energy consumption, and non-driving-related emissions to calculate life-cycle emissions. We observe reduced life-cycle emissions from 0.4% to 9.6% and reduced energy consumption from 1.5% to 12.2%.