Abstract:Constrained synthesizability is an unaddressed challenge in generative molecular design. In particular, designing molecules satisfying multi-parameter optimization objectives, while simultaneously being synthesizable and enforcing the presence of specific commercial building blocks in the synthesis. This is practically important for molecule re-purposing, sustainability, and efficiency. In this work, we propose a novel reward function called TANimoto Group Overlap (TANGO), which uses chemistry principles to transform a sparse reward function into a dense and learnable reward function -- crucial for reinforcement learning. TANGO can augment general-purpose molecular generative models to directly optimize for constrained synthesizability while simultaneously optimizing for other properties relevant to drug discovery using reinforcement learning. Our framework is general and addresses starting-material, intermediate, and divergent synthesis constraints. Contrary to most existing works in the field, we show that incentivizing a general-purpose (without any inductive biases) model is a productive approach to navigating challenging optimization scenarios. We demonstrate this by showing that the trained models explicitly learn a desirable distribution. Our framework is the first generative approach to tackle constrained synthesizability.
Abstract:Generative molecular design for drug discovery has very recently achieved a wave of experimental validation, with language-based backbones being the most common architectures employed. The most important factor for downstream success is whether an in silico oracle is well correlated with the desired end-point. To this end, current methods use cheaper proxy oracles with higher throughput before evaluating the most promising subset with high-fidelity oracles. The ability to directly optimize high-fidelity oracles would greatly enhance generative design and be expected to improve hit rates. However, current models are not efficient enough to consider such a prospect, exemplifying the sample efficiency problem. In this work, we introduce Saturn, which leverages the Augmented Memory algorithm and demonstrates the first application of the Mamba architecture for generative molecular design. We elucidate how experience replay with data augmentation improves sample efficiency and how Mamba synergistically exploits this mechanism. Saturn outperforms 22 models on multi-parameter optimization tasks relevant to drug discovery and may possess sufficient sample efficiency to consider the prospect of directly optimizing high-fidelity oracles.
Abstract:Generative molecular design has moved from proof-of-concept to real-world applicability, as marked by the surge in very recent papers reporting experimental validation. Key challenges in explainability and sample efficiency present opportunities to enhance generative design to directly optimize expensive high-fidelity oracles and provide actionable insights to domain experts. Here, we propose Beam Enumeration to exhaustively enumerate the most probable sub-sequences from language-based molecular generative models and show that molecular substructures can be extracted. When coupled with reinforcement learning, extracted substructures become meaningful, providing a source of explainability and improving sample efficiency through self-conditioned generation. Beam Enumeration is generally applicable to any language-based molecular generative model and notably further improves the performance of the recently reported Augmented Memory algorithm, which achieved the new state-of-the-art on the Practical Molecular Optimization benchmark for sample efficiency. The combined algorithm generates more high reward molecules and faster, given a fixed oracle budget. Beam Enumeration is the first method to jointly address explainability and sample efficiency for molecular design.
Abstract:Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal oracle evaluations (computational prediction or wet-lab experiment). This problem becomes more apparent when using oracles that can provide increased predictive accuracy but impose a significant cost. Consequently, these oracles cannot be directly optimized under a practical budget. Molecular generative models have shown remarkable sample efficiency when coupled with reinforcement learning, as demonstrated in the Practical Molecular Optimization (PMO) benchmark. Here, we propose a novel algorithm called Augmented Memory that combines data augmentation with experience replay. We show that scores obtained from oracle calls can be reused to update the model multiple times. We compare Augmented Memory to previously proposed algorithms and show significantly enhanced sample efficiency in an exploitation task and a drug discovery case study requiring both exploration and exploitation. Our method achieves a new state-of-the-art in the PMO benchmark which enforces a computational budget, outperforming the previous best performing method on 19/23 tasks.