Abstract:Over the past ten years, the application of artificial intelligence (AI) and machine learning (ML) in engineering domains has gained significant popularity, showcasing their potential in data-driven contexts. However, the complexity and diversity of engineering problems often require the development of domain-specific AI approaches, which are frequently hindered by a lack of systematic methodologies, scalability, and robustness during the development process. To address this gap, this paper introduces the "ABCDE" as the key elements of Engineering AI and proposes a unified, systematic engineering AI ecosystem framework, including eight essential layers, along with attributes, goals, and applications, to guide the development and deployment of AI solutions for specific engineering needs. Additionally, key challenges are examined, and nine future research directions are highlighted. By providing a comprehensive perspective, this paper aims to advance the strategic implementation of AI, fostering the development of next-generation engineering AI solutions.
Abstract:Recent advancement in industrial artificial intelligence (AI) is reshaping the industry, driving smarter manufacturing, predictive maintenance, and intelligent decision-making. However, existing approaches often focus primarily on algorithms and models, overlooking the importance of systematically integrating domain knowledge, data, and models to ensure more comprehensive and effective AI solutions. Therefore, the effective development and deployment of Industrial AI solutions require a more comprehensive and systematic approach. To address this gap, this paper summarizes previous research and rethinks the role of industrial AI and presents a unified industrial AI foundation framework comprising three core modules: knowledge module, data module, and model module. These modules help to extend and enhance the industrial AI methodology platform, supporting various industrial applications. In addition, a case study on rotating machinery diagnosis demonstrates the framework's effectiveness, and several future directions are highlighted for the development of the industrial AI foundation framework.
Abstract:Machine fault diagnosis (FD) is a critical task for predictive maintenance, enabling early fault detection and preventing unexpected failures. Despite its importance, existing FD models are operation-specific with limited generalization across diverse datasets. Foundation models (FM) have demonstrated remarkable potential in both visual and language domains, achieving impressive generalization capabilities even with minimal data through few-shot or zero-shot learning. However, translating these advances to FD presents unique hurdles. Unlike the large-scale, cohesive datasets available for images and text, FD datasets are typically smaller and more heterogeneous, with significant variations in sampling frequencies and the number of channels across different systems and applications. This heterogeneity complicates the design of a universal architecture capable of effectively processing such diverse data while maintaining robust feature extraction and learning capabilities. In this paper, we introduce UniFault, a foundation model for fault diagnosis that systematically addresses these issues. Specifically, the model incorporates a comprehensive data harmonization pipeline featuring two key innovations. First, a unification scheme transforms multivariate inputs into standardized univariate sequences while retaining local inter-channel relationships. Second, a novel cross-domain temporal fusion strategy mitigates distribution shifts and enriches sample diversity and count, improving the model generalization across varying conditions. UniFault is pretrained on over 9 billion data points spanning diverse FD datasets, enabling superior few-shot performance. Extensive experiments on real-world FD datasets demonstrate that UniFault achieves SoTA performance, setting a new benchmark for fault diagnosis models and paving the way for more scalable and robust predictive maintenance solutions.
Abstract:In the era of Industry 4.0, artificial intelligence (AI) is assuming an increasingly pivotal role within industrial systems. Despite the recent trend within various industries to adopt AI, the actual adoption of AI is not as developed as perceived. A significant factor contributing to this lag is the data issues in AI implementation. How to address these data issues stands as a significant concern confronting both industry and academia. To address data issues, the first step involves mapping out these issues. Therefore, this study conducts a meta-review to explore data issues and methods within the implementation of industrial AI. Seventy-two data issues are identified and categorized into various stages of the data lifecycle, including data source and collection, data access and storage, data integration and interoperation, data pre-processing, data processing, data security and privacy, and AI technology adoption. Subsequently, the study analyzes the data requirements of various AI algorithms. Building on the aforementioned analyses, it proposes a data management framework, addressing how data issues can be systematically resolved at every stage of the data lifecycle. Finally, the study highlights future research directions. In doing so, this study enriches the existing body of knowledge and provides guidelines for professionals navigating the complex landscape of achieving data usability and usefulness in industrial AI.
Abstract:This paper presents a topological analytics approach within the 5-level Cyber-Physical Systems (CPS) architecture for the Stream-of-Quality assessment in smart manufacturing. The proposed methodology not only enables real-time quality monitoring and predictive analytics but also discovers the hidden relationships between quality features and process parameters across different manufacturing processes. A case study in additive manufacturing was used to demonstrate the feasibility of the proposed methodology to maintain high product quality and adapt to product quality variations. This paper demonstrates how topological graph visualization can be effectively used for the real-time identification of new representative data through the Stream-of-Quality assessment.
Abstract:In the field of Prognostics and Health Management (PHM), recent years have witnessed a significant surge in the application of machine learning (ML). Despite this growth, the field grapples with a lack of unified guidelines and systematic approaches for effectively implementing these ML techniques and comprehensive analysis regarding industrial open-source data across varied scenarios. To address these gaps, this paper provides a comprehensive review of machine learning approaches for diagnostics and prognostics of industrial systems using open-source datasets from PHM Data Challenge Competitions held between 2018 and 2023 by PHM Society and IEEE Reliability Society and summarizes a unified ML framework. This review systematically categorizes and scrutinizes the problems, challenges, methodologies, and advancements demonstrated in these competitions, highlighting the evolving role of both conventional machine learning and deep learning in tackling complex industrial tasks related to detection, diagnosis, assessment, and prognosis. Moreover, this paper delves into the common challenges in PHM data challenge competitions by emphasizing both data-related and model-related issues and summarizes the solutions that have been employed to address these challenges. Finally, we identify key themes and potential directions for future research, providing opportunities and prospects for ML further development in PHM.
Abstract:The recent emergence of large language models (LLMs) shows the potential for artificial general intelligence, revealing new opportunities in industry 4.0 and smart manufacturing. However, a notable gap exists in applying these LLMs in industry, primarily due to their training on general knowledge rather than domain-specific knowledge. Such specialized domain knowledge is vital for effectively addressing the complex needs of industrial applications. To bridge this gap, this paper proposes an Industrial Large Knowledge Model (ILKM) framework emphasizing their potential to revolutionize the industry in smart manufacturing. In addition, ILKMs and LLMs are compared from eight perspectives. Finally, "6S Principle" is proposed as the guideline for the development of ILKMs in smart manufacturing.