Abstract:Over the past ten years, the application of artificial intelligence (AI) and machine learning (ML) in engineering domains has gained significant popularity, showcasing their potential in data-driven contexts. However, the complexity and diversity of engineering problems often require the development of domain-specific AI approaches, which are frequently hindered by a lack of systematic methodologies, scalability, and robustness during the development process. To address this gap, this paper introduces the "ABCDE" as the key elements of Engineering AI and proposes a unified, systematic engineering AI ecosystem framework, including eight essential layers, along with attributes, goals, and applications, to guide the development and deployment of AI solutions for specific engineering needs. Additionally, key challenges are examined, and nine future research directions are highlighted. By providing a comprehensive perspective, this paper aims to advance the strategic implementation of AI, fostering the development of next-generation engineering AI solutions.
Abstract:This paper presents a topological analytics approach within the 5-level Cyber-Physical Systems (CPS) architecture for the Stream-of-Quality assessment in smart manufacturing. The proposed methodology not only enables real-time quality monitoring and predictive analytics but also discovers the hidden relationships between quality features and process parameters across different manufacturing processes. A case study in additive manufacturing was used to demonstrate the feasibility of the proposed methodology to maintain high product quality and adapt to product quality variations. This paper demonstrates how topological graph visualization can be effectively used for the real-time identification of new representative data through the Stream-of-Quality assessment.