Abstract:Objective: To develop a novel deep learning framework for the automated segmentation of colonic polyps in colonoscopy images, overcoming the limitations of current approaches in preserving precise polyp boundaries, incorporating multi-scale features, and modeling spatial dependencies that accurately reflect the intricate and diverse morphology of polyps. Methods: To address these limitations, we propose a novel Multiscale Network with Spatial-enhanced Attention (MNet-SAt) for polyp segmentation in colonoscopy images. This framework incorporates four key modules: Edge-Guided Feature Enrichment (EGFE) preserves edge information for improved boundary quality; Multi-Scale Feature Aggregator (MSFA) extracts and aggregates multi-scale features across channel spatial dimensions, focusing on salient regions; Spatial-Enhanced Attention (SEAt) captures spatial-aware global dependencies within the multi-scale aggregated features, emphasizing the region of interest; and Channel-Enhanced Atrous Spatial Pyramid Pooling (CE-ASPP) resamples and recalibrates attentive features across scales. Results: We evaluated MNet-SAt on the Kvasir-SEG and CVC-ClinicDB datasets, achieving Dice Similarity Coefficients of 96.61% and 98.60%, respectively. Conclusion: Both quantitative (DSC) and qualitative assessments highlight MNet-SAt's superior performance and generalization capabilities compared to existing methods. Significance: MNet-SAt's high accuracy in polyp segmentation holds promise for improving clinical workflows in early polyp detection and more effective treatment, contributing to reduced colorectal cancer mortality rates.
Abstract:In this paper, we propose long short term memory speech enhancement network (LSTMSE-Net), an audio-visual speech enhancement (AVSE) method. This innovative method leverages the complementary nature of visual and audio information to boost the quality of speech signals. Visual features are extracted with VisualFeatNet (VFN), and audio features are processed through an encoder and decoder. The system scales and concatenates visual and audio features, then processes them through a separator network for optimized speech enhancement. The architecture highlights advancements in leveraging multi-modal data and interpolation techniques for robust AVSE challenge systems. The performance of LSTMSE-Net surpasses that of the baseline model from the COG-MHEAR AVSE Challenge 2024 by a margin of 0.06 in scale-invariant signal-to-distortion ratio (SISDR), $0.03$ in short-time objective intelligibility (STOI), and $1.32$ in perceptual evaluation of speech quality (PESQ). The source code of the proposed LSTMSE-Net is available at \url{https://github.com/mtanveer1/AVSEC-3-Challenge}.