Abstract:This paper presents an experimental study on mmWave beam profiling on a mmWave testbed, and develops a machine learning model for beamforming based on the experiment data. The datasets we have obtained from the beam profiling and the machine learning model for beamforming are valuable for a broad set of network design problems, such as network topology optimization, user equipment association, power allocation, and beam scheduling, in complex and dynamic mmWave networks. We have used two commercial-grade mmWave testbeds with operational frequencies on the 27 Ghz and 71 GHz, respectively, for beam profiling. The obtained datasets were used to train the machine learning model to estimate the received downlink signal power, and data rate at the receivers (user equipment with different geographical locations in the range of a transmitter (base station). The results have shown high prediction accuracy with low mean square error (loss), indicating the model's ability to estimate the received signal power or data rate at each individual receiver covered by a beam. The dataset and the machine learning-based beamforming model can assist researchers in optimizing various network design problems for mmWave networks.
Abstract:In this letter, we study an attack that leverages a reconfigurable intelligent surface (RIS) to induce harmful interference toward multiple users in massive multiple-input multiple-output (mMIMO) systems during the data transmission phase. We propose an efficient and flexible weighted-sum projected gradient-based algorithm for the attacker to optimize the RIS reflection coefficients without knowing legitimate user channels. To counter such a threat, we propose two reception strategies. Simulation results demonstrate that our malicious algorithm outperforms baseline strategies while offering adaptability for targeting specific users. At the same time, our results show that our mitigation strategies are effective even if only an imperfect estimate of the cascade RIS channel is available.
Abstract:RIS is one of the significant technological advancements that will mark next-generation wireless. RIS technology also opens up the possibility of new security threats, since the reflection of impinging signals can be used for malicious purposes. This article introduces the basic concept for a RIS-assisted attack that re-uses the legitimate signal towards a malicious objective. Specific attacks are identified from this base scenario, and the RIS-assisted signal cancellation attack is selected for evaluation as an attack that inherently exploits RIS capabilities. The key takeaway from the evaluation is that an effective attack requires accurate channel information, a RIS deployed in a favorable location (from the point of view of the attacker), and it disproportionately affects legitimate links that already suffer from reduced path loss. These observations motivate specific security solutions and recommendations for future work.