Abstract:In this letter, we study an attack that leverages a reconfigurable intelligent surface (RIS) to induce harmful interference toward multiple users in massive multiple-input multiple-output (mMIMO) systems during the data transmission phase. We propose an efficient and flexible weighted-sum projected gradient-based algorithm for the attacker to optimize the RIS reflection coefficients without knowing legitimate user channels. To counter such a threat, we propose two reception strategies. Simulation results demonstrate that our malicious algorithm outperforms baseline strategies while offering adaptability for targeting specific users. At the same time, our results show that our mitigation strategies are effective even if only an imperfect estimate of the cascade RIS channel is available.
Abstract:RIS is one of the significant technological advancements that will mark next-generation wireless. RIS technology also opens up the possibility of new security threats, since the reflection of impinging signals can be used for malicious purposes. This article introduces the basic concept for a RIS-assisted attack that re-uses the legitimate signal towards a malicious objective. Specific attacks are identified from this base scenario, and the RIS-assisted signal cancellation attack is selected for evaluation as an attack that inherently exploits RIS capabilities. The key takeaway from the evaluation is that an effective attack requires accurate channel information, a RIS deployed in a favorable location (from the point of view of the attacker), and it disproportionately affects legitimate links that already suffer from reduced path loss. These observations motivate specific security solutions and recommendations for future work.