Abstract:This paper highlights the significance of natural language processing (NLP) within artificial intelligence, underscoring its pivotal role in comprehending and modeling human language. Recent advancements in NLP, particularly in conversational bots, have garnered substantial attention and adoption among developers. This paper explores advanced methodologies for attaining smaller and more efficient NLP models. Specifically, we employ three key approaches: (1) training a Transformer-based neural network to detect offensive language, (2) employing data augmentation and knowledge distillation techniques to increase performance, and (3) incorporating multi-task learning with knowledge distillation and teacher annealing using diverse datasets to enhance efficiency. The culmination of these methods has yielded demonstrably improved outcomes.
Abstract:The detection and classification of diseases in Robusta coffee leaves are essential to ensure that plants are healthy and the crop yield is kept high. However, this job requires extensive botanical knowledge and much wasted time. Therefore, this task and others similar to it have been extensively researched subjects in image classification. Regarding leaf disease classification, most approaches have used the more popular PlantVillage dataset while completely disregarding other datasets, like the Robusta Coffee Leaf (RoCoLe) dataset. As the RoCoLe dataset is imbalanced and does not have many samples, fine-tuning of pre-trained models and multiple augmentation techniques need to be used. The current paper uses the RoCoLe dataset and approaches based on deep learning for classifying coffee leaf diseases from images, incorporating the pix2pix model for segmentation and cycle-generative adversarial network (CycleGAN) for augmentation. Our study demonstrates the effectiveness of Transformer-based models, online augmentations, and CycleGAN augmentation in improving leaf disease classification. While synthetic data has limitations, it complements real data, enhancing model performance. These findings contribute to developing robust techniques for plant disease detection and classification.
Abstract:This work focuses on plant leaf disease classification and explores three crucial aspects: adversarial training, model explainability, and model compression. The models' robustness against adversarial attacks is enhanced through adversarial training, ensuring accurate classification even in the presence of threats. Leveraging explainability techniques, we gain insights into the model's decision-making process, improving trust and transparency. Additionally, we explore model compression techniques to optimize computational efficiency while maintaining classification performance. Through our experiments, we determine that on a benchmark dataset, the robustness can be the price of the classification accuracy with performance reductions of 3%-20% for regular tests and gains of 50%-70% for adversarial attack tests. We also demonstrate that a student model can be 15-25 times more computationally efficient for a slight performance reduction, distilling the knowledge of more complex models.
Abstract:Developing natural language processing (NLP) systems for social media analysis remains an important topic in artificial intelligence research. This article introduces RoBERTweet, the first Transformer architecture trained on Romanian tweets. Our RoBERTweet comes in two versions, following the base and large architectures of BERT. The corpus used for pre-training the models represents a novelty for the Romanian NLP community and consists of all tweets collected from 2008 to 2022. Experiments show that RoBERTweet models outperform the previous general-domain Romanian and multilingual language models on three NLP tasks with tweet inputs: emotion detection, sexist language identification, and named entity recognition. We make our models and the newly created corpus of Romanian tweets freely available.