Abstract:This paper summarizes the music demixing (MDX) track of the Sound Demixing Challenge (SDX'23). We provide a summary of the challenge setup and introduce the task of robust music source separation (MSS), i.e., training MSS models in the presence of errors in the training data. We propose a formalization of the errors that can occur in the design of a training dataset for MSS systems and introduce two new datasets that simulate such errors: SDXDB23_LabelNoise and SDXDB23_Bleeding1. We describe the methods that achieved the highest scores in the competition. Moreover, we present a direct comparison with the previous edition of the challenge (the Music Demixing Challenge 2021): the best performing system under the standard MSS formulation achieved an improvement of over 1.6dB in signal-to-distortion ratio over the winner of the previous competition, when evaluated on MDXDB21. Besides relying on the signal-to-distortion ratio as objective metric, we also performed a listening test with renowned producers/musicians to study the perceptual quality of the systems and report here the results. Finally, we provide our insights into the organization of the competition and our prospects for future editions.
Abstract:Maize is a highly nutritional cereal widely used for human and animal consumption and also as raw material by the biofuels industries. This highlights the importance of precisely quantifying the corn grain productivity in season, helping the commercialization process, operationalization, and critical decision-making. Considering the manual labor cost of counting maize kernels, we propose in this work a novel preprocessing pipeline named hinting that guides the attention of the model to the center of the corn kernels and enables a deep learning model to deliver better performance, given a picture of one side of the corn ear. Also, we propose a multivariate CNN regressor that outperforms single regression results. Experiments indicated that the proposed approach excels the current manual estimates, obtaining MAE of 34.4 and R2 of 0.74 against 35.38 and 0.72 for the manual estimate, respectively.