Abstract:Battery-free Internet of Things (BF-IoT) enabled by backscatter communication is a rapidly evolving technology offering advantages of low cost, ultra-low power consumption, and robustness. However, the practical deployment of BF-IoT is significantly constrained by the limited communication range of common backscatter tags, which typically operate with a range of merely a few meters due to inherent round-trip path loss. Meta-backscatter systems that utilize metamaterial tags present a promising solution, retaining the inherent advantages of BF-IoT while breaking the critical communication range barrier. By leveraging densely paved sub-wavelength units to concentrate the reflected signal power, metamaterial tags enable a significant communication range extension over existing BF-IoT tags that employ omni-directional antennas. In this paper, we synthesize the principles and paradigms of metamaterial sensing to establish a unified design framework and a forward-looking research roadmap. Specifically, we first provide an overview of backscatter communication, encompassing its development history, working principles, and tag classification. We then introduce the design methodology for both metamaterial tags and their compatible transceivers. Moreover, we present the implementation of a meta-backscatter system prototype and report the experimental results based on it. Finally, we conclude by highlighting key challenges and outlining potential avenues for future research.



Abstract:Holographic multiple-input multiple-output (HMIMO) is an emerging technology for 6G communications, in which numerous antenna units are integrated in a limited space. As the HMIMO array aperture expands, the near-field region of the array is dramatically enlarged, resulting in more users being located in the near-field region. This creates new opportunities for wireless communications. In this context, the evaluation of the spatial degrees of freedom (DoF) of HMIMO multi-user systems in near-field channels is an open problem, as the methods of analysis utilized for evaluating the DoF in far-field channels cannnot be directly applied due to the different propagation characteristics. In this paper, we propose a novel method to calculate the DoF of HMIMO in multi-user near-field channels. We first derive the DoF for a single user in the near field, and then extend the analysis to multi-user scenarios. In this latter scenario, we focus on the impact of spatial blocking between HMIMO users. The derived analytical framework reveals that the DoF of HMIMO in multi-user near-field channels is not in general given by the sum of the DoF of the HMIMO single-user setting. Simulation results demonstrate that the proposed method can accurately estimate the DoF in HMIMO multi-user near-field channels in the presence of spatial blocking.




Abstract:Holographic Multiple-Input Multiple-Output (HMIMO), which densely integrates numerous antennas into a limited space, is anticipated to provide higher rates for future 6G wireless communications. The increase in antenna aperture size makes the near-field region enlarge, causing some users to be located in the near-field region. Thus, we are facing a hybrid near-field and far-field communication problem, where conventional far-field modeling methods may not work well. In this paper, we propose a near-far field channel model that does not presuppose whether each path is near-field or far-field, different from the existing work requiring the ratio of the number of near-field paths to that of far-field paths as prior knowledge. However, this gives rise to a new challenge for accurately modeling the channel, as conventional methods of obtaining channel model parameters are not applicable to this model. Therefore, we propose a new method, Expectation-Maximization (EM)-based Near-Far Field Channel Modeling, to obtain channel model parameters, which considers whether each path is near-field or far-field as a hidden variable, and optimizes the hidden variables and channel model parameters through an alternating iteration method. Simulation results show that our method is superior to conventional near-field and far-field algorithms in fitting the near-far field channel in terms of outage probability.