Holographic multiple-input multiple-output (HMIMO) is an emerging technology for 6G communications, in which numerous antenna units are integrated in a limited space. As the HMIMO array aperture expands, the near-field region of the array is dramatically enlarged, resulting in more users being located in the near-field region. This creates new opportunities for wireless communications. In this context, the evaluation of the spatial degrees of freedom (DoF) of HMIMO multi-user systems in near-field channels is an open problem, as the methods of analysis utilized for evaluating the DoF in far-field channels cannnot be directly applied due to the different propagation characteristics. In this paper, we propose a novel method to calculate the DoF of HMIMO in multi-user near-field channels. We first derive the DoF for a single user in the near field, and then extend the analysis to multi-user scenarios. In this latter scenario, we focus on the impact of spatial blocking between HMIMO users. The derived analytical framework reveals that the DoF of HMIMO in multi-user near-field channels is not in general given by the sum of the DoF of the HMIMO single-user setting. Simulation results demonstrate that the proposed method can accurately estimate the DoF in HMIMO multi-user near-field channels in the presence of spatial blocking.