Holographic Multiple-Input Multiple-Output (HMIMO), which densely integrates numerous antennas into a limited space, is anticipated to provide higher rates for future 6G wireless communications. The increase in antenna aperture size makes the near-field region enlarge, causing some users to be located in the near-field region. Thus, we are facing a hybrid near-field and far-field communication problem, where conventional far-field modeling methods may not work well. In this paper, we propose a near-far field channel model that does not presuppose whether each path is near-field or far-field, different from the existing work requiring the ratio of the number of near-field paths to that of far-field paths as prior knowledge. However, this gives rise to a new challenge for accurately modeling the channel, as conventional methods of obtaining channel model parameters are not applicable to this model. Therefore, we propose a new method, Expectation-Maximization (EM)-based Near-Far Field Channel Modeling, to obtain channel model parameters, which considers whether each path is near-field or far-field as a hidden variable, and optimizes the hidden variables and channel model parameters through an alternating iteration method. Simulation results show that our method is superior to conventional near-field and far-field algorithms in fitting the near-far field channel in terms of outage probability.