Abstract:Out-of-distribution (OOD) detection is the task of identifying data sampled from distributions that were not used during training. This task is essential for reliable machine learning and a better understanding of their generalization capabilities. Among OOD detection methods, Outlier Exposure (OE) significantly enhances OOD detection performance and generalization ability by exposing auxiliary OOD data to the model. However, constructing clean auxiliary OOD datasets, uncontaminated by in-distribution (ID) samples, is essential for OE; generally, a noisy OOD dataset contaminated with ID samples negatively impacts OE training dynamics and final detection performance. Furthermore, as dataset scale increases, constructing clean OOD data becomes increasingly challenging and costly. To address these challenges, we propose Taylor Outlier Exposure (TaylorOE), an OE-based approach with regularization that allows training on noisy OOD datasets contaminated with ID samples. Specifically, we represent the OE regularization term as a polynomial function via a Taylor expansion, allowing us to control the regularization strength for ID data in the auxiliary OOD dataset by adjusting the order of Taylor expansion. In our experiments on the OOD detection task with clean and noisy OOD datasets, we demonstrate that the proposed method consistently outperforms conventional methods and analyze our regularization term to show its effectiveness. Our implementation code of TaylorOE is available at \url{https://github.com/fukuchan41/TaylorOE}.
Abstract:In carotid arteries, plaque can develop as localized elevated lesions. The Jellyfish sign, marked by fluctuating plaque surfaces with blood flow pulsation, is a dynamic characteristic of these plaques that has recently attracted attention. Detecting this sign is vital, as it is often associated with cerebral infarction. This paper proposes an ultrasound video-based classification method for the Jellyfish sign, using deep neural networks. The proposed method first preprocesses carotid ultrasound videos to separate the movement of the vascular wall from plaque movements. These preprocessed videos are then combined with plaque surface information and fed into a deep learning model comprising convolutional and recurrent neural networks, enabling the efficient classification of the Jellyfish sign. The proposed method was verified using ultrasound video images from 200 patients. Ablation studies demonstrated the effectiveness of each component of the proposed method.
Abstract:The success of neural fields for 3D vision tasks is now indisputable. Following this trend, several methods aiming for visual localization (e.g., SLAM) have been proposed to estimate distance or density fields using neural fields. However, it is difficult to achieve high localization performance by only density fields-based methods such as Neural Radiance Field (NeRF) since they do not provide density gradient in most empty regions. On the other hand, distance field-based methods such as Neural Implicit Surface (NeuS) have limitations in objects' surface shapes. This paper proposes Neural Density-Distance Field (NeDDF), a novel 3D representation that reciprocally constrains the distance and density fields. We extend distance field formulation to shapes with no explicit boundary surface, such as fur or smoke, which enable explicit conversion from distance field to density field. Consistent distance and density fields realized by explicit conversion enable both robustness to initial values and high-quality registration. Furthermore, the consistency between fields allows fast convergence from sparse point clouds. Experiments show that NeDDF can achieve high localization performance while providing comparable results to NeRF on novel view synthesis. The code is available at https://github.com/ueda0319/neddf.
Abstract:Understanding the context of complex and cluttered scenes is a challenging problem for semantic segmentation. However, it is difficult to model the context without prior and additional supervision because the scene's factors, such as the scale, shape, and appearance of objects, vary considerably in these scenes. To solve this, we propose to learn the structures of objects and the hierarchy among objects because context is based on these intrinsic properties. In this study, we design novel hierarchical, contextual, and multiscale pyramidal representations to capture the properties from an input image. Our key idea is the recursive segmentation in different hierarchical regions based on a predefined number of regions and the aggregation of the context in these regions. The aggregated contexts are used to predict the contextual relationship between the regions and partition the regions in the following hierarchical level. Finally, by constructing the pyramid representations from the recursively aggregated context, multiscale and hierarchical properties are attained. In the experiments, we confirmed that our proposed method achieves state-of-the-art performance in PASCAL Context.