Abstract:In clinical practice, assessment of right ventricle (RV) is primarily done through its global volume, given it is a standardised measurement, and has a good reproducibility in 3D modalities such as MRI and 3D echocardiography. However, many illness produce regionalchanges and therefore a local analysis could provide a better tool for understanding and diagnosis of illnesses. Current regional clinical measurements are 2D linear dimensions, and suffer of low reproducibility due to the difficulty to identify landmarks in the RV, specially in echocardiographic images due to its noise and artefacts. We proposed an automatic method for parcellating the RV cavity and compute regional volumes and ejection fractions in three regions: apex, inlet and outflow. We tested the reproducibility in 3D echocardiographic images. We also present a synthetic mesh-deformation method to generate a groundtruth dataset for validating the ability of the method to capture different types of remodelling. Results showed an acceptable intra-observer reproduciblity (<10%) but a higher inter-observer(>10%). The synthetic dataset allowed to identify that the method was capable of assessing global dilatations, and local dilatations in the circumferential direction but not longitudinal elongations
Abstract:The availability of large scale databases containing imaging and non-imaging data, such as the UK Biobank, represents an opportunity to improve our understanding of healthy and diseased bodily function. Cardiac motion atlases provide a space of reference in which the motion fields of a cohort of subjects can be directly compared. In this work, a cardiac motion atlas is built from cine MR data from the UK Biobank (~ 6000 subjects). Two automated quality control strategies are proposed to reject subjects with insufficient image quality. Based on the atlas, three dimensionality reduction algorithms are evaluated to learn data-driven cardiac motion descriptors, and statistical methods used to study the association between these descriptors and non-imaging data. Results show a positive correlation between the atlas motion descriptors and body fat percentage, basal metabolic rate, hypertension, smoking status and alcohol intake frequency. The proposed method outperforms the ability to identify changes in cardiac function due to these known cardiovascular risk factors compared to ejection fraction, the most commonly used descriptor of cardiac function. In conclusion, this work represents a framework for further investigation of the factors influencing cardiac health.