Abstract:Large language models (LLMs) have demonstrated remarkable performance across a wide range of industrial applications, from search and recommendations to generative tasks. Although scaling laws indicate that larger models generally yield better generalization and performance, their substantial computational requirements often render them impractical for many real-world scenarios at scale. In this paper, we present methods and insights for training small language models (SLMs) that deliver high performance and efficiency in deployment. We focus on two key techniques: (1) knowledge distillation and (2) model compression via quantization and pruning. These approaches enable SLMs to retain much of the quality of their larger counterparts while significantly reducing training, serving costs, and latency. We detail the impact of these techniques on a variety of use cases at a large professional social network platform and share deployment lessons - including hardware optimization strategies that enhance speed and throughput for both predictive and reasoning-based applications.
Abstract:In this paper, we propose a new adaptive stochastic gradient Langevin dynamics (ASGLD) algorithmic framework and its two specialized versions, namely adaptive stochastic gradient (ASG) and adaptive gradient Langevin dynamics(AGLD), for non-convex optimization problems. All proposed algorithms can escape from saddle points with at most $O(\log d)$ iterations, which is nearly dimension-free. Further, we show that ASGLD and ASG converge to a local minimum with at most $O(\log d/\epsilon^4)$ iterations. Also, ASGLD with full gradients or ASGLD with a slowly linearly increasing batch size converge to a local minimum with iterations bounded by $O(\log d/\epsilon^2)$, which outperforms existing first-order methods.