Abstract:The advancement in deep learning and internet-of-things have led to diverse human sensing applications. However, distinct patterns in human sensing, influenced by various factors or contexts, challenge generic neural network model's performance due to natural distribution shifts. To address this, personalization tailors models to individual users. Yet most personalization studies overlook intra-user heterogeneity across contexts in sensory data, limiting intra-user generalizability. This limitation is especially critical in clinical applications, where limited data availability hampers both generalizability and personalization. Notably, intra-user sensing attributes are expected to change due to external factors such as treatment progression, further complicating the challenges.This work introduces CRoP, a novel static personalization approach using an off-the-shelf pre-trained model and pruning to optimize personalization and generalization. CRoP shows superior personalization effectiveness and intra-user robustness across four human-sensing datasets, including two from real-world health domains, highlighting its practical and social impact. Additionally, to support CRoP's generalization ability and design choices, we provide empirical justification through gradient inner product analysis, ablation studies, and comparisons against state-of-the-art baselines.
Abstract:Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user's body captured by a thermal camera can provide important information about the "fight-flight" response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of 0.8293 in binary stress classification, outperforming the thermal-only baseline approach by over 9%. Extensive evaluations highlight ThermaStrain's effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach.
Abstract:Mispronunciation detection tools could increase treatment access for speech sound disorders impacting, e.g., /r/. We show age-and-sex normalized formant estimation outperforms cepstral representation for detection of fully rhotic vs. derhotic /r/ in the PERCEPT-R Corpus. Gated recurrent neural networks trained on this feature set achieve a mean test participant-specific F1-score =.81 ({\sigma}x=.10, med = .83, n = 48), with post hoc modeling showing no significant effect of child age or sex.
Abstract:This first-of-its-kind paper presents a novel approach named PASAD that detects changes in perceptually fluent speech acoustics of young children. Particularly, analysis of perceptually fluent speech enables identifying the speech-motor-control factors that are considered as the underlying cause of stuttering disfluencies. Recent studies indicate that the speech production of young children, especially those who stutter, may get adversely affected by situational physiological arousal. A major contribution of this paper is leveraging the speaker's situational physiological responses in real-time to analyze the speech signal effectively. The presented PASAD approach adapts a Hyper-Network structure to extract temporal speech importance information leveraging physiological parameters. In addition, a novel non-local acoustic spectrogram feature extraction network identifies meaningful acoustic attributes. Finally, a sequential network utilizes the acoustic attributes and the extracted temporal speech importance for effective classification. We collected speech and physiological sensing data from 73 preschool-age children who stutter (CWS) and who don't stutter (CWNS) in different conditions. PASAD's unique architecture enables visualizing speech attributes distinct to a CWS's fluent speech and mapping them to the speaker's respective speech-motor-control factors (i.e., speech articulators). Extracted knowledge can enhance understanding of children's fluent speech, speech-motor-control (SMC), and stuttering development. Our comprehensive evaluation shows that PASAD outperforms state-of-the-art multi-modal baseline approaches in different conditions, is expressive and adaptive to the speaker's speech and physiology, generalizable, robust, and is real-time executable on mobile and scalable devices.
Abstract:Fraudulent activities are an expensive problem for many financial institutions, costing billions of dollars to corporations annually. More commonly occurring activities in this regard are credit card frauds. In this context, the credit card fraud detection concept has been developed over the lines of incorporating the uncertainty in our prediction system to ensure better judgment in such a crucial task. We propose to use a sparse Gaussian classification method to work with the large data-set and use the concept of pseudo or inducing inputs. We perform the same with different sets of kernels and the different number of inducing data points to show the best accuracy was obtained with the selection of RBF kernel with a higher number of inducing points. Our approach was able to work over large financial data given the stochastic nature of our method employed and also good test accuracy with low variance over the prediction suggesting confidence and robustness in our model. Using the methodologies of Bayesian learning techniques with the incorporated inducing points phenomenon, are successfully able to obtain a healthy accuracy and a high confidence score.