Abstract:We share observations and challenges from an ongoing effort to implement Explainable AI (XAI) in a domain-specific workflow for cybersecurity analysts. Specifically, we briefly describe a preliminary case study on the use of XAI for source code classification, where accurate assessment and timeliness are paramount. We find that the outputs of state-of-the-art saliency explanation techniques (e.g., SHAP or LIME) are lost in translation when interpreted by people with little AI expertise, despite these techniques being marketed for non-technical users. Moreover, we find that popular XAI techniques offer fewer insights for real-time human-AI workflows when they are post hoc and too localized in their explanations. Instead, we observe that cyber analysts need higher-level, easy-to-digest explanations that can offer as little disruption as possible to their workflows. We outline unaddressed gaps in practical and effective XAI, then touch on how emerging technologies like Large Language Models (LLMs) could mitigate these existing obstacles.
Abstract:We present LinkQ, a system that leverages a large language model (LLM) to facilitate knowledge graph (KG) query construction through natural language question-answering. Traditional approaches often require detailed knowledge of complex graph querying languages, limiting the ability for users -- even experts -- to acquire valuable insights from KG data. LinkQ simplifies this process by first interpreting a user's question, then converting it into a well-formed KG query. By using the LLM to construct a query instead of directly answering the user's question, LinkQ guards against the LLM hallucinating or generating false, erroneous information. By integrating an LLM into LinkQ, users are able to conduct both exploratory and confirmatory data analysis, with the LLM helping to iteratively refine open-ended questions into precise ones. To demonstrate the efficacy of LinkQ, we conducted a qualitative study with five KG practitioners and distill their feedback. Our results indicate that practitioners find LinkQ effective for KG question-answering, and desire future LLM-assisted systems for the exploratory analysis of graph databases.
Abstract:Recently, uncertainty-aware deep learning methods for multiclass labeling problems have been developed that provide calibrated class prediction probabilities and out-of-distribution (OOD) indicators, letting machine learning (ML) consumers and engineers gauge a model's confidence in its predictions. However, this extra neural network prediction information is challenging to scalably convey visually for arbitrary data sources under multiple uncertainty contexts. To address these challenges, we present ScatterUQ, an interactive system that provides targeted visualizations to allow users to better understand model performance in context-driven uncertainty settings. ScatterUQ leverages recent advances in distance-aware neural networks, together with dimensionality reduction techniques, to construct robust, 2-D scatter plots explaining why a model predicts a test example to be (1) in-distribution and of a particular class, (2) in-distribution but unsure of the class, and (3) out-of-distribution. ML consumers and engineers can visually compare the salient features of test samples with training examples through the use of a ``hover callback'' to understand model uncertainty performance and decide follow up courses of action. We demonstrate the effectiveness of ScatterUQ to explain model uncertainty for a multiclass image classification on a distance-aware neural network trained on Fashion-MNIST and tested on Fashion-MNIST (in distribution) and MNIST digits (out of distribution), as well as a deep learning model for a cyber dataset. We quantitatively evaluate dimensionality reduction techniques to optimize our contextually driven UQ visualizations. Our results indicate that the ScatterUQ system should scale to arbitrary, multiclass datasets. Our code is available at https://github.com/mit-ll-responsible-ai/equine-webapp
Abstract:This study presents insights from interviews with nineteen Knowledge Graph (KG) practitioners who work in both enterprise and academic settings on a wide variety of use cases. Through this study, we identify critical challenges experienced by KG practitioners when creating, exploring, and analyzing KGs that could be alleviated through visualization design. Our findings reveal three major personas among KG practitioners - KG Builders, Analysts, and Consumers - each of whom have their own distinct expertise and needs. We discover that KG Builders would benefit from schema enforcers, while KG Analysts need customizable query builders that provide interim query results. For KG Consumers, we identify a lack of efficacy for node-link diagrams, and the need for tailored domain-specific visualizations to promote KG adoption and comprehension. Lastly, we find that implementing KGs effectively in practice requires both technical and social solutions that are not addressed with current tools, technologies, and collaborative workflows. From the analysis of our interviews, we distill several visualization research directions to improve KG usability, including knowledge cards that balance digestibility and discoverability, timeline views to track temporal changes, interfaces that support organic discovery, and semantic explanations for AI and machine learning predictions.