Abstract:Graph distillation has emerged as a promising avenue to enable scalable training of GNNs by compressing the training dataset while preserving essential graph characteristics. Our study uncovers significant shortcomings in current graph distillation techniques. First, the majority of the algorithms paradoxically require training on the full dataset to perform distillation. Second, due to their gradient-emulating approach, these methods require fresh distillation for any change in hyperparameters or GNN architecture, limiting their flexibility and reusability. Finally, they fail to achieve substantial size reduction due to synthesizing fully-connected, edge-weighted graphs. To address these challenges, we present Bonsai, a novel graph distillation method empowered by the observation that \textit{computation trees} form the fundamental processing units of message-passing GNNs. Bonsai distills datasets by encoding a careful selection of \textit{exemplar} trees that maximize the representation of all computation trees in the training set. This unique approach imparts Bonsai as the first linear-time, model-agnostic graph distillation algorithm for node classification that outperforms existing baselines across $6$ real-world datasets on accuracy, while being $22$ times faster on average. Bonsai is grounded in rigorous mathematical guarantees on the adopted approximation strategies making it robust to GNN architectures, datasets, and parameters.
Abstract:Fault detection and isolation in complex systems are critical to ensure reliable and efficient operation. However, traditional fault detection methods often struggle with issues such as nonlinearity and multivariate characteristics of the time series variables. This article proposes a generative adversarial wavelet neural operator (GAWNO) as a novel unsupervised deep learning approach for fault detection and isolation of multivariate time series processes.The GAWNO combines the strengths of wavelet neural operators and generative adversarial networks (GANs) to effectively capture both the temporal distributions and the spatial dependencies among different variables of an underlying system. The approach of fault detection and isolation using GAWNO consists of two main stages. In the first stage, the GAWNO is trained on a dataset of normal operating conditions to learn the underlying data distribution. In the second stage, a reconstruction error-based threshold approach using the trained GAWNO is employed to detect and isolate faults based on the discrepancy values. We validate the proposed approach using the Tennessee Eastman Process (TEP) dataset and Avedore wastewater treatment plant (WWTP) and N2O emissions named as WWTPN2O datasets. Overall, we showcase that the idea of harnessing the power of wavelet analysis, neural operators, and generative models in a single framework to detect and isolate faults has shown promising results compared to various well-established baselines in the literature.
Abstract:GNNs, like other deep learning models, are data and computation hungry. There is a pressing need to scale training of GNNs on large datasets to enable their usage on low-resource environments. Graph distillation is an effort in that direction with the aim to construct a smaller synthetic training set from the original training data without significantly compromising model performance. While initial efforts are promising, this work is motivated by two key observations: (1) Existing graph distillation algorithms themselves rely on training with the full dataset, which undermines the very premise of graph distillation. (2) The distillation process is specific to the target GNN architecture and hyper-parameters and thus not robust to changes in the modeling pipeline. We circumvent these limitations by designing a distillation algorithm called Mirage for graph classification. Mirage is built on the insight that a message-passing GNN decomposes the input graph into a multiset of computation trees. Furthermore, the frequency distribution of computation trees is often skewed in nature, enabling us to condense this data into a concise distilled summary. By compressing the computation data itself, as opposed to emulating gradient flows on the original training set-a prevalent approach to date-Mirage transforms into an unsupervised and architecture-agnostic distillation algorithm. Extensive benchmarking on real-world datasets underscores Mirage's superiority, showcasing enhanced generalization accuracy, data compression, and distillation efficiency when compared to state-of-the-art baselines.
Abstract:Modelling spatio-temporal processes on road networks is a task of growing importance. While significant progress has been made on developing spatio-temporal graph neural networks (Gnns), existing works are built upon three assumptions that are not practical on real-world road networks. First, they assume sensing on every node of a road network. In reality, due to budget-constraints or sensor failures, all locations (nodes) may not be equipped with sensors. Second, they assume that sensing history is available at all installed sensors. This is unrealistic as well due to sensor failures, loss of packets during communication, etc. Finally, there is an assumption of static road networks. Connectivity within networks change due to road closures, constructions of new roads, etc. In this work, we develop FRIGATE to address all these shortcomings. FRIGATE is powered by a spatio-temporal Gnn that integrates positional, topological, and temporal information into rich inductive node representations. The joint fusion of this diverse information is made feasible through a novel combination of gated Lipschitz embeddings with Lstms. We prove that the proposed Gnn architecture is provably more expressive than message-passing Gnns used in state-of-the-art algorithms. The higher expressivity of FRIGATE naturally translates to superior empirical performance conducted on real-world network-constrained traffic data. In addition, FRIGATE is robust to frugal sensor deployment, changes in road network connectivity, and temporal irregularity in sensing.
Abstract:Due to their complex nonlinear dynamics and batch-to-batch variability, batch processes pose a challenge for process control. Due to the absence of accurate models and resulting plant-model mismatch, these problems become harder to address for advanced model-based control strategies. Reinforcement Learning (RL), wherein an agent learns the policy by directly interacting with the environment, offers a potential alternative in this context. RL frameworks with actor-critic architecture have recently become popular for controlling systems where state and action spaces are continuous. It has been shown that an ensemble of actor and critic networks further helps the agent learn better policies due to the enhanced exploration due to simultaneous policy learning. To this end, the current study proposes a stochastic actor-critic RL algorithm, termed Twin Actor Soft Actor-Critic (TASAC), by incorporating an ensemble of actors for learning, in a maximum entropy framework, for batch process control.
Abstract:Inclusion of high throughput technologies in the field of biology has generated massive amounts of biological data in the recent years. Now, transforming these huge volumes of data into knowledge is the primary challenge in computational biology. The traditional methods of data analysis have failed to carry out the task. Hence, researchers are turning to machine learning based approaches for the analysis of high-dimensional big data. In machine learning, once a model is trained with a training dataset, it can be applied on a testing dataset which is independent. In current times, deep learning algorithms further promote the application of machine learning in several field of biology including plant virology. Considering a significant progress in the application of machine learning in understanding plant virology, this review highlights an introductory note on machine learning and comprehensively discusses the trends and prospects of machine learning in diagnosis of viral diseases, understanding host-virus interplay and emergence of plant viruses.