Abstract:Target-oriented grasping in unstructured scenes with language control is essential for intelligent robot arm grasping. The ability for the robot arm to understand the human language and execute corresponding grasping actions is a pivotal challenge. In this paper, we propose a combination model called QwenGrasp which combines a large vision-language model with a 6-DoF grasp neural network. QwenGrasp is able to conduct a 6-DoF grasping task on the target object with textual language instruction. We design a complete experiment with six-dimension instructions to test the QwenGrasp when facing with different cases. The results show that QwenGrasp has a superior ability to comprehend the human intention. Even in the face of vague instructions with descriptive words or instructions with direction information, the target object can be grasped accurately. When QwenGrasp accepts the instruction which is not feasible or not relevant to the grasping task, our approach has the ability to suspend the task execution and provide a proper feedback to humans, improving the safety. In conclusion, with the great power of large vision-language model, QwenGrasp can be applied in the open language environment to conduct the target-oriented grasping task with freely input instructions.
Abstract:Given the ubiquity of non-separable optimization problems in real worlds, in this paper we analyze and extend the large-scale version of the well-known cooperative coevolution (CC), a divide-and-conquer optimization framework, on non-separable functions. First, we reveal empirical reasons of why decomposition-based methods are preferred or not in practice on some non-separable large-scale problems, which have not been clearly pointed out in many previous CC papers. Then, we formalize CC to a continuous game model via simplification, but without losing its essential property. Different from previous evolutionary game theory for CC, our new model provides a much simpler but useful viewpoint to analyze its convergence, since only the pure Nash equilibrium concept is needed and more general fitness landscapes can be explicitly considered. Based on convergence analyses, we propose a hierarchical decomposition strategy for better generalization, as for any decomposition there is a risk of getting trapped into a suboptimal Nash equilibrium. Finally, we use powerful distributed computing to accelerate it under the multi-level learning framework, which combines the fine-tuning ability from decomposition with the invariance property of CMA-ES. Experiments on a set of high-dimensional functions validate both its search performance and scalability (w.r.t. CPU cores) on a clustering computing platform with 400 CPU cores.