Abstract:Despite that deep learning (DL) methods have presented tremendous potential in many medical image analysis tasks, the practical applications of medical DL models are limited due to the lack of enough data samples with manual annotations. By noting that the clinical radiology examinations are associated with radiology reports that describe the images, we propose to develop a foundation model for multi-model head MRI by using contrastive learning on the images and the corresponding radiology findings. In particular, a contrastive learning framework is proposed, where a mixed syntax and semantic similarity matching metric is integrated to reduce the thirst of extreme large dataset in conventional contrastive learning framework. Our proposed similarity enhanced contrastive language image pretraining (SeLIP) is able to effectively extract more useful features. Experiments revealed that our proposed SeLIP performs well in many downstream tasks including image-text retrieval task, classification task, and image segmentation, which highlights the importance of considering the similarities among texts describing different images in developing medical image foundation models.
Abstract:To provide real-time parking information, existing studies focus on predicting parking availability, which seems an indirect approach to saving drivers' cruising time. In this paper, we first time propose an on-street parking recommendation (OPR) task to directly recommend a parking space for a driver. To this end, a learn-to-rank (LTR) based OPR model called OPR-LTR is built. Specifically, parking recommendation is closely related to the "turnover events" (state switching between occupied and vacant) of each parking space, and hence we design a highly efficient heterogeneous graph called ESGraph to represent historical and real-time meters' turnover events as well as geographical relations; afterward, a convolution-based event-then-graph network is used to aggregate and update representations of the heterogeneous graph. A ranking model is further utilized to learn a score function that helps recommend a list of ranked parking spots for a specific on-street parking query. The method is verified using the on-street parking meter data in Hong Kong and San Francisco. By comparing with the other two types of methods: prediction-only and prediction-then-recommendation, the proposed direct-recommendation method achieves satisfactory performance in different metrics. Extensive experiments also demonstrate that the proposed ESGraph and the recommendation model are more efficient in terms of computational efficiency as well as saving drivers' on-street parking time.