Klaus
Abstract:Full-duplex (FD) technology is gaining popularity for integration into a wide range of wireless networks due to its demonstrated potential in recent studies. In contrast to half-duplex (HD) technology, the implementation of FD in networks necessitates considering inter-node interference (INI) from various network perspectives. When deploying FD technology in networks, several critical factors must be taken into account. These include self-interference (SI) and the requisite SI cancellation (SIC) processes, as well as the selection of multiple user equipment (UE) per time slot. Additionally, inter-node interference (INI), including cross-link interference (CLI) and inter-cell interference (ICI), become crucial issues during concurrent uplink (UL) and downlink (DL) transmission and reception, similar to SI. Since most INI is challenging to eliminate, a comprehensive investigation that covers radio resource control (RRC), medium access control (MAC), and the physical layer (PHY) is essential in the context of FD network design, rather than focusing on individual network layers and types. This paper covers state-of-the-art studies, including protocols and documents from 3GPP for FD, MAC protocol, user scheduling, and CLI handling. The methods are also compared through a network-level system simulation based on 3D ray-tracing.
Abstract:Semantic communications have shown promising advancements by optimizing source and channel coding jointly. However, the dynamics of these systems remain understudied, limiting research and performance gains. Inspired by the robustness of Vision Transformers (ViTs) in handling image nuisances, we propose a ViT-based model for semantic communications. Our approach achieves a peak signal-to-noise ratio (PSNR) gain of +0.5 dB over convolutional neural network variants. We introduce novel measures, average cosine similarity and Fourier analysis, to analyze the inner workings of semantic communications and optimize the system's performance. We also validate our approach through a real wireless channel prototype using software-defined radio (SDR). To the best of our knowledge, this is the first investigation of the fundamental workings of a semantic communications system, accompanied by the pioneering hardware implementation. To facilitate reproducibility and encourage further research, we provide open-source code, including neural network implementations and LabVIEW codes for SDR-based wireless transmission systems.
Abstract:Semantic communications are expected to enable the more effective delivery of meaning rather than a precise transfer of symbols. In this paper, we propose an end-to-end deep neural network-based architecture for image transmission and demonstrate its feasibility in a real-time wireless channel by implementing a prototype based on a field-programmable gate array (FPGA). We demonstrate that this system outperforms the traditional 256-quadrature amplitude modulation system in the low signal-to-noise ratio regime with the popular CIFAR-10 dataset. To the best of our knowledge, this is the first work that implements and investigates real-time semantic communications with a vision transformer.