AI-Med Group, AI Innovation Center, Sharif University of Technology, Tehran, Iran, DML Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
Abstract:Graph-structured datasets often suffer from class imbalance, which complicates node classification tasks. In this work, we address this issue by first providing an upper bound on population risk for imbalanced transductive node classification. We then propose a simple and novel algorithm, Uncertainty-aware Pseudo-labeling (UPL). Our approach leverages pseudo-labels assigned to unlabeled nodes to mitigate the adverse effects of imbalance on classification accuracy. Furthermore, the UPL algorithm enhances the accuracy of pseudo-labeling by reducing training noise of pseudo-labels through a novel uncertainty-aware approach. We comprehensively evaluate the UPL algorithm across various benchmark datasets, demonstrating its superior performance compared to existing state-of-the-art methods.
Abstract:Intelligent transportation systems (ITS) aim to advance innovative strategies relating to different modes of transport, traffic management, and autonomous vehicles. This paper studies the platoon of connected and autonomous vehicles (CAV) and proposes a distributed observer to track the state of the CAV dynamics. First, we model the CAV dynamics via an LTI interconnected system. Then, a consensus-based strategy is proposed to infer the state of the CAV dynamics based on local information exchange over the communication network of vehicles. A linear-matrix-inequality (LMI) technique is adopted for the block-diagonal observer gain design such that this gain is associated in a distributed way and locally to every vehicle. The distributed observer error dynamics is then shown to follow the structure of the Kronecker matrix product of the system dynamics and the adjacency matrix of the CAV network. The notions of survivable network design and redundant observer scheme are further discussed in the paper to address resilience to link and node failure. Finally, we verify our theoretical contributions via numerical simulations.
Abstract:Intelligent transportation systems have recently emerged to address the growing interest for safer, more efficient, and sustainable transportation solutions. In this direction, this paper presents distributed algorithms for control and optimization over vehicular networks. First, we formulate the autonomous vehicle platooning framework based on model-predictive-control (MPC) strategies and present its objective optimization as a cooperative quadratic cost function. Then, we propose a distributed algorithm to locally optimize this objective at every vehicle subject to data quantization over the communication network of vehicles. In contrast to most existing literature that assumes ideal communication channels, log-scale data quantization over the network is addressed in this work, which is more realistic and practical. In particular, we show by simulation that the proposed log-quantized algorithm reaches optimal convergence with less residual and optimality gap. This outperforms the existing literature considering uniform quantization which leads to a large optimality gap and residual.
Abstract:Electroencephalogram (EEG) signals have emerged as a promising modality for biometric identification. While previous studies have explored the use of imagined speech with semantically meaningful words for subject identification, most have relied on additional visual or auditory cues. In this study, we introduce a cueless EEG-based imagined speech paradigm, where subjects imagine the pronunciation of semantically meaningful words without any external cues. This innovative approach addresses the limitations of prior methods by requiring subjects to select and imagine words from a predefined list naturally. The dataset comprises over 4,350 trials from 11 subjects across five sessions. We assess a variety of classification methods, including traditional machine learning techniques such as Support Vector Machines (SVM) and XGBoost, as well as time-series foundation models and deep learning architectures specifically designed for EEG classification, such as EEG Conformer and Shallow ConvNet. A session-based hold-out validation strategy was employed to ensure reliable evaluation and prevent data leakage. Our results demonstrate outstanding classification accuracy, reaching 97.93%. These findings highlight the potential of cueless EEG paradigms for secure and reliable subject identification in real-world applications, such as brain-computer interfaces (BCIs).
Abstract:Grapheme-to-phoneme (G2P) conversion is critical in speech processing, particularly for applications like speech synthesis. G2P systems must possess linguistic understanding and contextual awareness of languages with polyphone words and context-dependent phonemes. Large language models (LLMs) have recently demonstrated significant potential in various language tasks, suggesting that their phonetic knowledge could be leveraged for G2P. In this paper, we evaluate the performance of LLMs in G2P conversion and introduce prompting and post-processing methods that enhance LLM outputs without additional training or labeled data. We also present a benchmarking dataset designed to assess G2P performance on sentence-level phonetic challenges of the Persian language. Our results show that by applying the proposed methods, LLMs can outperform traditional G2P tools, even in an underrepresented language like Persian, highlighting the potential of developing LLM-aided G2P systems.
Abstract:In this study, we introduce ManaTTS, the most extensive publicly accessible single-speaker Persian corpus, and a comprehensive framework for collecting transcribed speech datasets for the Persian language. ManaTTS, released under the open CC-0 license, comprises approximately 86 hours of audio with a sampling rate of 44.1 kHz. Alongside ManaTTS, we also generated the VirgoolInformal dataset to evaluate Persian speech recognition models used for forced alignment, extending over 5 hours of audio. The datasets are supported by a fully transparent, MIT-licensed pipeline, a testament to innovation in the field. It includes unique tools for sentence tokenization, bounded audio segmentation, and a novel forced alignment method. This alignment technique is specifically designed for low-resource languages, addressing a crucial need in the field. With this dataset, we trained a Tacotron2-based TTS model, achieving a Mean Opinion Score (MOS) of 3.76, which is remarkably close to the MOS of 3.86 for the utterances generated by the same vocoder and natural spectrogram, and the MOS of 4.01 for the natural waveform, demonstrating the exceptional quality and effectiveness of the corpus.
Abstract:Decentralized optimization strategies are helpful for various applications, from networked estimation to distributed machine learning. This paper studies finite-sum minimization problems described over a network of nodes and proposes a computationally efficient algorithm that solves distributed convex problems and optimally finds the solution to locally non-convex objective functions. In contrast to batch gradient optimization in some literature, our algorithm is on a single-time scale with no extra inner consensus loop. It evaluates one gradient entry per node per time. Further, the algorithm addresses link-level nonlinearity representing, for example, logarithmic quantization of the exchanged data or clipping of the exchanged data bits. Leveraging perturbation-based theory and algebraic Laplacian network analysis proves optimal convergence and dynamics stability over time-varying and switching networks. The time-varying network setup might be due to packet drops or link failures. Despite the nonlinear nature of the dynamics, we prove exact convergence in the face of odd sign-preserving sector-bound nonlinear data transmission over the links. Illustrative numerical simulations further highlight our contributions.
Abstract:Decentralized strategies are of interest for learning from large-scale data over networks. This paper studies learning over a network of geographically distributed nodes/agents subject to quantization. Each node possesses a private local cost function, collectively contributing to a global cost function, which the proposed methodology aims to minimize. In contrast to many existing literature, the information exchange among nodes is quantized. We adopt a first-order computationally-efficient distributed optimization algorithm (with no extra inner consensus loop) that leverages node-level gradient correction based on local data and network-level gradient aggregation only over nearby nodes. This method only requires balanced networks with no need for stochastic weight design. It can handle log-scale quantized data exchange over possibly time-varying and switching network setups. We analyze convergence over both structured networks (for example, training over data-centers) and ad-hoc multi-agent networks (for example, training over dynamic robotic networks). Through analysis and experimental validation, we show that (i) structured networks generally result in a smaller optimality gap, and (ii) logarithmic quantization leads to smaller optimality gap compared to uniform quantization.
Abstract:Meta-learning involves multiple learners, each dedicated to specific tasks, collaborating in a data-constrained setting. In current meta-learning methods, task learners locally learn models from sensitive data, termed support sets. These task learners subsequently share model-related information, such as gradients or loss values, which is computed using another part of the data termed query set, with a meta-learner. The meta-learner employs this information to update its meta-knowledge. Despite the absence of explicit data sharing, privacy concerns persist. This paper examines potential data leakage in a prominent metalearning algorithm, specifically Model-Agnostic Meta-Learning (MAML). In MAML, gradients are shared between the metalearner and task-learners. The primary objective is to scrutinize the gradient and the information it encompasses about the task dataset. Subsequently, we endeavor to propose membership inference attacks targeting the task dataset containing support and query sets. Finally, we explore various noise injection methods designed to safeguard the privacy of task data and thwart potential attacks. Experimental results demonstrate the effectiveness of these attacks on MAML and the efficacy of proper noise injection methods in countering them.
Abstract:The protein-ligand binding affinity (PLA) prediction goal is to predict whether or not the ligand could bind to a protein sequence. Recently, in PLA prediction, deep learning has received much attention. Two steps are involved in deep learning-based approaches: feature extraction and task prediction step. Many deep learning-based approaches concentrate on introducing new feature extraction networks or integrating auxiliary knowledge like protein-protein interaction networks or gene ontology knowledge. Then, a task prediction network is designed simply using some fully connected layers. This paper aims to integrate retrieved similar hard protein-ligand pairs in PLA prediction (i.e., task prediction step) using a semi-supervised graph convolutional network (GCN). Hard protein-ligand pairs are retrieved for each input query sample based on the manifold smoothness constraint. Then, a graph is learned automatically in which each node is a protein-ligand pair, and each edge represents the similarity between pairs. In other words, an end-to-end framework is proposed that simultaneously retrieves hard similar samples, learns protein-ligand descriptor, learns the graph topology of the input sample with retrieved similar hard samples (learn adjacency matrix), and learns a semi-supervised GCN to predict the binding affinity (as task predictor). The training step adjusts the parameter values, and in the inference step, the learned model is fine-tuned for each input sample. To evaluate the proposed approach, it is applied to the four well-known PDBbind, Davis, KIBA, and BindingDB datasets. The results show that the proposed method significantly performs better than the comparable approaches.