Abstract:Frequent modifications of unit test cases are inevitable due to software's continuous underlying changes in source code, design, and requirements. Since manually maintaining software test suites is tedious, timely, and costly, automating the process of generation and maintenance of test units will significantly impact the effectiveness and efficiency of software testing processes. To this end, we propose an automated approach which exploits both structural and semantic properties of source code methods and test cases to recommend the most relevant and useful unit tests to the developers. The proposed approach initially trains a neural network to transform method-level source code, as well as unit tests, into distributed representations (embedded vectors) while preserving the importance of the structure in the code. Retrieving the semantic and structural properties of a given method, the approach computes cosine similarity between the method's embedding and the previously-embedded training instances. Further, according to the similarity scores between the embedding vectors, the model identifies the closest methods of embedding and the associated unit tests as the most similar recommendations. The results on the Methods2Test dataset showed that, while there is no guarantee to have similar relevant test cases for the group of similar methods, the proposed approach extracts the most similar existing test cases for a given method in the dataset, and evaluations show that recommended test cases decrease the developers' effort to generating expected test cases.
Abstract:Why are some research studies easy to reproduce while others are difficult? Casting doubt on the accuracy of scientific work is not fruitful, especially when an individual researcher cannot reproduce the claims made in the paper. There could be many subjective reasons behind the inability to reproduce a scientific paper. The field of Machine Learning (ML) faces a reproducibility crisis, and surveying a portion of published articles has resulted in a group realization that although sharing code repositories would be appreciable, code bases are not the end all be all for determining the reproducibility of an article. Various parties involved in the publication process have come forward to address the reproducibility crisis and solutions such as badging articles as reproducible, reproducibility checklists at conferences (\textit{NeurIPS, ICML, ICLR, etc.}), and sharing artifacts on \textit{OpenReview} come across as promising solutions to the core problem. The breadth of literature on reproducibility focuses on measures required to avoid ir-reproducibility, and there is not much research into the effort behind reproducing these articles. In this paper, we investigate the factors that contribute to the easiness and difficulty of reproducing previously published studies and report on the foundational framework to quantify effort of reproducibility.
Abstract:While social media plays a vital role in communication nowadays, misinformation and trolls can easily take over the conversation and steer public opinion on these platforms. We saw the effect of misinformation during the COVID-19 pandemic when public health officials faced significant push-back while trying to motivate the public to vaccinate. To tackle the current and any future threats in emergencies and motivate the public towards a common goal, it is essential to understand how public motivation shifts and which topics resonate among the general population. In this study, we proposed an interactive visualization tool to inspect and analyze the topics that resonated among Twitter-sphere during the COVID-19 pandemic and understand the key factors that shifted public stance for vaccination. This tool can easily be generalized for any scenario for visual analysis and to increase the transparency of social media data for researchers and the general population alike.
Abstract:Research articles are being shared in increasing numbers on multiple online platforms. Although the scholarly impact of these articles has been widely studied, the online interest determined by how long the research articles are shared online remains unclear. Being cognizant of how long a research article is mentioned online could be valuable information to the researchers. In this paper, we analyzed multiple social media platforms on which users share and/or discuss scholarly articles. We built three clusters for papers, based on the number of yearly online mentions having publication dates ranging from the year 1920 to 2016. Using the online social media metrics for each of these three clusters, we built machine learning models to predict the long-term online interest in research articles. We addressed the prediction task with two different approaches: regression and classification. For the regression approach, the Multi-Layer Perceptron model performed best, and for the classification approach, the tree-based models performed better than other models. We found that old articles are most evident in the contexts of economics and industry (i.e., patents). In contrast, recently published articles are most evident in research platforms (i.e., Mendeley) followed by social media platforms (i.e., Twitter).
Abstract:Social media users share their ideas, thoughts, and emotions with other users. However, it is not clear how online users would respond to new research outcomes. This study aims to predict the nature of the emotions expressed by Twitter users toward scientific publications. Additionally, we investigate what features of the research articles help in such prediction. Identifying the sentiments of research articles on social media will help scientists gauge a new societal impact of their research articles.
Abstract:Video communication has been rapidly increasing over the past decade, with YouTube providing a medium where users can post, discover, share, and react to videos. There has also been an increase in the number of videos citing research articles, especially since it has become relatively commonplace for academic conferences to require video submissions. However, the relationship between research articles and YouTube videos is not clear, and the purpose of the present paper is to address this issue. We created new datasets using YouTube videos and mentions of research articles on various online platforms. We found that most of the articles cited in the videos are related to medicine and biochemistry. We analyzed these datasets through statistical techniques and visualization, and built machine learning models to predict (1) whether a research article is cited in videos, (2) whether a research article cited in a video achieves a level of popularity, and (3) whether a video citing a research article becomes popular. The best models achieved F1 scores between 80% and 94%. According to our results, research articles mentioned in more tweets and news coverage have a higher chance of receiving video citations. We also found that video views are important for predicting citations and increasing research articles' popularity and public engagement with science.
Abstract:Identifying important scholarly literature at an early stage is vital to the academic research community and other stakeholders such as technology companies and government bodies. Due to the sheer amount of research published and the growth of ever-changing interdisciplinary areas, researchers need an efficient way to identify important scholarly work. The number of citations a given research publication has accrued has been used for this purpose, but these take time to occur and longer to accumulate. In this article, we use altmetrics to predict the short-term and long-term citations that a scholarly publication could receive. We build various classification and regression models and evaluate their performance, finding neural networks and ensemble models to perform best for these tasks. We also find that Mendeley readership is the most important factor in predicting the early citations, followed by other factors such as the academic status of the readers (e.g., student, postdoc, professor), followers on Twitter, online post length, author count, and the number of mentions on Twitter, Wikipedia, and across different countries.
Abstract:Twitter is a popular platform for e-commerce in the Arab region including the sale of illegal goods and services. Social media platforms present multiple opportunities to mine information about behaviors pertaining to both illicit and pharmaceutical drugs and likewise to legal prescription drugs sold without a prescription, i.e., illegally. Recognized as a public health risk, the sale and use of illegal drugs, counterfeit versions of legal drugs, and legal drugs sold without a prescription constitute a widespread problem that is reflected in and facilitated by social media. Twitter provides a crucial resource for monitoring legal and illegal drug sales in order to support the larger goal of finding ways to protect patient safety. We collected our dataset using Arabic keywords. We then categorized the data using four machine learning classifiers. Based on a comparison of the respective results, we assessed the accuracy of each classifier in predicting two important considerations in analysing the extent to which drugs are available on social media: references to drugs for sale and the legality/illegality of the drugs thus advertised. For predicting tweets selling drugs, Support Vector Machine, yielded the highest accuracy rate (96%), whereas for predicting the legality of the advertised drugs, the Naive Bayes, classifier yielded the highest accuracy rate (85%).
Abstract:A crucial goal of funding research and development has always been to advance economic development. On this basis, a consider-able body of research undertaken with the purpose of determining what exactly constitutes economic impact and how to accurately measure that impact has been published. Numerous indicators have been used to measure economic impact, although no single indicator has been widely adapted. Based on patent data collected from Altmetric we predict patent citations through various social media features using several classification models. Patents citing a research paper implies the potential it has for direct application inits field. These predictions can be utilized by researchers in deter-mining the practical applications for their work when applying for patents.
Abstract:Research on social-media platforms has tended to rely on textual analysis to perform research tasks. While text-based approaches have significantly increased our understanding of online behavior and social dynamics, they overlook features on these platforms that have grown in prominence in the past few years: click-based responses to content. In this paper, we present a new dataset of Facebook Reactions to scholarly content. We give an overview of its structure, analyze some of the statistical trends in the data, and use it to train and test two supervised learning algorithms. Our preliminary tests suggest the presence of stratification in the number of users following pages, divisions that seem to fall in line with distinctions in the subject matter of those pages.