Abstract:With recent advancements, the wireless local area network (WLAN) or wireless fidelity (Wi-Fi) technology has been successfully utilized to realize sensing functionalities such as detection, localization, and recognition. However, the WLANs standards are developed mainly for the purpose of communication, and thus may not be able to meet the stringent requirements for emerging sensing applications. To resolve this issue, a new Task Group (TG), namely IEEE 802.11bf, has been established by the IEEE 802.11 working group, with the objective of creating a new amendment to the WLAN standard to meet advanced sensing requirements while minimizing the effect on communications. This paper provides a comprehensive overview on the up-to-date efforts in the IEEE 802.11bf TG. First, we introduce the definition of the 802.11bf amendment and its formation and standardization timeline. Next, we discuss the WLAN sensing use cases with the corresponding key performance indicator (KPI) requirements. After reviewing previous WLAN sensing research based on communication-oriented WLAN standards, we identify their limitations and underscore the practical need for the new sensing-oriented amendment in 802.11bf. Furthermore, we discuss the WLAN sensing framework and procedure used for measurement acquisition, by considering both sensing at sub-7GHz and directional multi-gigabit (DMG) sensing at 60 GHz, respectively, and address their shared features, similarities, and differences. In addition, we present various candidate technical features for IEEE 802.11bf, including waveform/sequence design, feedback types, as well as quantization and compression techniques. We also describe the methodologies and the channel modeling used by the IEEE 802.11bf TG for evaluation. Finally, we discuss the challenges and future research directions to motivate more research endeavors towards this field in details.
Abstract:This paper studies an intelligent reflecting surface (IRS)-aided downlink ultra-reliable and low-latency communication (URLLC) system, in which an IRS is dedicatedly deployed to assist a base station (BS) to send individual short-packet messages to multiple users. To enhance the URLLC performance, the users are divided into different groups and the messages for users in each group are encoded into a single codeword. By considering the time division multiple access (TDMA) protocol among different groups, our objective is to minimize the total latency for all users subject to their individual reliability requirements, via jointly optimizing the user grouping and block-length allocation at the BS together with the reflective beamforming at the IRS. We solve the latency minimization problem via the alternating optimization, in which the blocklengths and the reflective beamforming are optimized by using the techniques of successive convex approximation (SCA) and semi-definite relaxation (SDR), while the user grouping is updated by K-means and greedy-based methods. Numerical results show that the proposed designs can significantly reduce the communication latency, as compared to various benchmark schemes, which unveil the importance of user grouping and reflective beamforming optimization for exploiting the joint encoding gain and enhancing the worst-case user performance.