Abstract:Medical image segmentation is an increasingly popular area of research in medical imaging processing and analysis. However, many researchers who are new to the field struggle with basic concepts. This tutorial paper aims to provide an overview of the fundamental concepts of medical imaging, with a focus on Magnetic Resonance and Computerized Tomography. We will also discuss deep learning algorithms, tools, and frameworks used for segmentation tasks, and suggest best practices for method development and image analysis. Our tutorial includes sample tasks using public data, and accompanying code is available on GitHub (https://github.com/MICLab-Unicamp/Medical-ImagingTutorial). By sharing our insights gained from years of experience in the field and learning from relevant literature, we hope to assist researchers in overcoming the initial challenges they may encounter in this exciting and important area of research.
Abstract:In this work we propose a novel self-attention mechanism model to address electricity theft detection on an imbalanced realistic dataset that presents a daily electricity consumption provided by State Grid Corporation of China. Our key contribution is the introduction of a multi-head self-attention mechanism concatenated with dilated convolutions and unified by a convolution of kernel size $1$. Moreover, we introduce a binary input channel (Binary Mask) to identify the position of the missing values, allowing the network to learn how to deal with these values. Our model achieves an AUC of $0.926$ which is an improvement in more than $17\%$ with respect to previous baseline work. The code is available on GitHub at https://github.com/neuralmind-ai/electricity-theft-detection-with-self-attention.