Abstract:Critical ground states of quantum many-body systems have emerged as vital resources for quantum-enhanced sensing. Traditional methods to prepare these states often rely on adiabatic evolution, which may diminish the quantum sensing advantage. In this work, we propose a quantum reinforcement learning (QRL)-enhanced critical sensing protocol for quantum many-body systems with exotic phase diagrams. Starting from product states and utilizing QRL-discovered gate sequences, we explore sensing accuracy in the presence of unknown external magnetic fields, covering both local and global regimes. Our results demonstrate that QRL-learned sequences reach the finite quantum speed limit and generalize effectively across systems of arbitrary size, ensuring accuracy regardless of preparation time. This method can robustly achieve Heisenberg and super-Heisenberg limits, even in noisy environments with practical Pauli measurements. Our study highlights the efficacy of QRL in enabling precise quantum state preparation, thereby advancing scalable, high-accuracy quantum critical sensing.