Abstract:The recent success of reinforcement learning's (RL) in solving complex tasks is most often attributed to its capacity to explore and exploit an environment where it has been trained. Sample efficiency is usually not an issue since cheap simulators are available to sample data on-policy. On the other hand, task oriented dialogues are usually learnt from offline data collected using human demonstrations. Collecting diverse demonstrations and annotating them is expensive. Unfortunately, use of RL methods trained on off-policy data are prone to issues of bias and generalization, which are further exacerbated by stochasticity in human response and non-markovian belief state of a dialogue management system. To this end, we propose a batch RL framework for task oriented dialogue policy learning: causal aware safe policy improvement (CASPI). This method gives guarantees on dialogue policy's performance and also learns to shape rewards according to intentions behind human responses, rather than just mimicking demonstration data; this couple with batch-RL helps overall with sample efficiency of the framework. We demonstrate the effectiveness of this framework on a dialogue-context-to-text Generation and end-to-end dialogue task of the Multiwoz2.0 dataset. The proposed method outperforms the current state of the art on these metrics, in both case. In the end-to-end case, our method trained only on 10\% of the data was able to out perform current state in three out of four evaluation metrics.
Abstract:Disparate access to resources by different subpopulations is a prevalent issue in societal and sociotechnical networks. For example, urban infrastructure networks may enable certain racial groups to more easily access resources such as high-quality schools, grocery stores, and polling places. Similarly, social networks within universities and organizations may enable certain groups to more easily access people with valuable information or influence. Here we introduce a new class of problems, Graph Augmentation for Equitable Access (GAEA), to enhance equity in networked systems by editing graph edges under budget constraints. We prove such problems are NP-hard, and cannot be approximated within a factor of $(1-\tfrac{1}{3e})$. We develop a principled, sample- and time- efficient Markov Reward Process (MRP)-based mechanism design framework for GAEA. Our algorithm outperforms baselines on a diverse set of synthetic graphs. We further demonstrate the method on real-world networks, by merging public census, school, and transportation datasets for the city of Chicago and applying our algorithm to find human-interpretable edits to the bus network that enhance equitable access to high-quality schools across racial groups. Further experiments on Facebook networks of universities yield sets of new social connections that would increase equitable access to certain attributed nodes across gender groups.
Abstract:There are many AI tasks involving multiple interacting agents where agents should learn to cooperate and collaborate to effectively perform the task. Here we develop and evaluate various multi-agent protocols to train agents to collaborate with teammates in grid soccer. We train and evaluate our multi-agent methods against a team operating with a smart hand-coded policy. As a baseline, we train agents concurrently and independently, with no communication. Our collaborative protocols were parameter sharing, coordinated learning with communication, and counterfactual policy gradients. Against the hand-coded team, the team trained with parameter sharing and the team trained with coordinated learning performed the best, scoring on 89.5% and 94.5% of episodes respectively when playing against the hand-coded team. Against the parameter sharing team, with adversarial training the coordinated learning team scored on 75% of the episodes, indicating it is the most adaptable of our methods. The insights gained from our work can be applied to other domains where multi-agent collaboration could be beneficial.
Abstract:We examine Memory Networks for the task of question answering (QA), under common real world scenario where training examples are scarce and under weakly supervised scenario, that is only extrinsic labels are available for training. We propose extensions for the Dynamic Memory Network (DMN), specifically within the attention mechanism, we call the resulting Neural Architecture as Dynamic Memory Tensor Network (DMTN). Ultimately, we see that our proposed extensions results in over 80% improvement in the number of task passed against the baselined standard DMN and 20% more task passed compared to state-of-the-art End-to-End Memory Network for Facebook's single task weakly trained 1K bAbi dataset.